Skip to main content
Top

2024 | OriginalPaper | Chapter

6. Hysteretic Systems: Resonances, Modal Coupling, Mitigation

Authors : Fabrizio Vestroni, Paolo Casini

Published in: Exploiting the Use of Strong Nonlinearity in Dynamics and Acoustics

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Several mechanical systems are characterized by hysteresis The Bouc-Wen model, simple but effective, has been adopted. First, the response of a hysteretic oscillator is illustrated by frequency response curves. The response depends on the oscillation amplitude: the resonance peak moves left with the increasing amplitude, according to the hysteresis softening nonlinearity. Then, the phenomena of nonlinear modal coupling are investigated by means of a two degree-of-freedom system. For increasing excitation system frequencies change and in turn their ratio changes; so, internal resonance conditions easily occur, with evident interaction phenomena. For a critical excitation intensity, the branch of resonance solutions of the first mode experiences a bifurcation and a novel mode arises. The occurrence of this superabundant mode is characterized by a notable transfer of energy between the two modes, with beneficial vibration mitigation. A case study of a barrier structure excited by the passage of high-speed trains is investigated, showing the performance of an added hysteretic device, which makes the energy transfer between the two modes easier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al-Bender, F., Symens, W., Swevers, J., & Van Brussel, H. (2004). Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. International Journal of Non-Linear Mechanics, 39, 1721–1735.CrossRef Al-Bender, F., Symens, W., Swevers, J., & Van Brussel, H. (2004). Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. International Journal of Non-Linear Mechanics, 39, 1721–1735.CrossRef
go back to reference Alexander, N. A., & Schilder, F. (2009). Exploring the performance of a nonlinear tuned mass damper. Journal of Sound and Vibration, 319, 445–462.CrossRef Alexander, N. A., & Schilder, F. (2009). Exploring the performance of a nonlinear tuned mass damper. Journal of Sound and Vibration, 319, 445–462.CrossRef
go back to reference Anand, G. V. (1972). Natural modes of coupled non-linear systems. International Journal of Non-Linear Mechanics, 7, 81–91.CrossRef Anand, G. V. (1972). Natural modes of coupled non-linear systems. International Journal of Non-Linear Mechanics, 7, 81–91.CrossRef
go back to reference Arnold, F. (1955). Steady state behaviour of systems provided with nonlinear dynamic vibration absorber. Journal of Applied Mechanics, 22, 487–492.CrossRef Arnold, F. (1955). Steady state behaviour of systems provided with nonlinear dynamic vibration absorber. Journal of Applied Mechanics, 22, 487–492.CrossRef
go back to reference Awrejcewicz, J. (2007). Hysteresis modelling and chaos prediction in one and two-DOF hysteretic models. Archive of Applied Mechanics, 77, 261–279.CrossRef Awrejcewicz, J. (2007). Hysteresis modelling and chaos prediction in one and two-DOF hysteretic models. Archive of Applied Mechanics, 77, 261–279.CrossRef
go back to reference Awrejcewicz, J., Dzyubak, L., & Lamarque, C. H. (2008). Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses. Communications in Nonlinear Science and Numerical Simulation, 13, 939–958.MathSciNetCrossRef Awrejcewicz, J., Dzyubak, L., & Lamarque, C. H. (2008). Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses. Communications in Nonlinear Science and Numerical Simulation, 13, 939–958.MathSciNetCrossRef
go back to reference Barbieri, N., Barbieri, R., da Silva, R. A., Marcos Jose Mannala, M. J., & Barbieri, L. (2016). Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper. Nonlinear Dynamics, 86, 501–512. Barbieri, N., Barbieri, R., da Silva, R. A., Marcos Jose Mannala, M. J., & Barbieri, L. (2016). Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper. Nonlinear Dynamics, 86, 501–512.
go back to reference Basili, M., Casini, P., Morelli, L., & Vestroni, F. (2019). A hysteretic absorber to mitigate vibrations of train noise barriers. Journal of Physics: Conference Series, 1264, 012033. Basili, M., Casini, P., Morelli, L., & Vestroni, F. (2019). A hysteretic absorber to mitigate vibrations of train noise barriers. Journal of Physics: Conference Series, 1264, 012033.
go back to reference Basili, M., Casini, P., Morelli, L., & Vestroni, F. (2021). Vibration mitigation of train noise barriers by hysteretic absorbers. Journal of Applied and Computational Mechanics, 7(SI), 1205–1217. Basili, M., Casini, P., Morelli, L., & Vestroni, F. (2021). Vibration mitigation of train noise barriers by hysteretic absorbers. Journal of Applied and Computational Mechanics, 7(SI), 1205–1217.
go back to reference Beck, J. L., & Pei, J.-S. (2022). Demonstrating the power of extended Masing models for hysteresis through model equivalencies and numerical investigation. Nonlinear Dynamics, 108(2), 827–856.CrossRef Beck, J. L., & Pei, J.-S. (2022). Demonstrating the power of extended Masing models for hysteresis through model equivalencies and numerical investigation. Nonlinear Dynamics, 108(2), 827–856.CrossRef
go back to reference Benedettini, F., Rega, G., & Vestroni, F. (1986). Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica, 21, 38–46.CrossRef Benedettini, F., Rega, G., & Vestroni, F. (1986). Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica, 21, 38–46.CrossRef
go back to reference Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In International Journal of Proceedings of the Fourth Conference on Non-Linear Oscillations, Prague. Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In International Journal of Proceedings of the Fourth Conference on Non-Linear Oscillations, Prague.
go back to reference Capecchi, D., & Vestroni, F. (1990). Periodic response of a class of hysteretic oscillators. International Journal of Non-Linear Mechanics, 25(2), 309–317.CrossRef Capecchi, D., & Vestroni, F. (1990). Periodic response of a class of hysteretic oscillators. International Journal of Non-Linear Mechanics, 25(2), 309–317.CrossRef
go back to reference Capecchi, D., & Vestroni, F. (1995). Asymptotic response of a two DOF elastoplastic system under harmonic excitation. Internal Resonance Case, Nonlinear Dynamics, 7, 317–333.CrossRef Capecchi, D., & Vestroni, F. (1995). Asymptotic response of a two DOF elastoplastic system under harmonic excitation. Internal Resonance Case, Nonlinear Dynamics, 7, 317–333.CrossRef
go back to reference Carboni, B., & Lacarbonara, W. (2016). Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations. Nonlinear Dynamics, 83, 23–39.CrossRef Carboni, B., & Lacarbonara, W. (2016). Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations. Nonlinear Dynamics, 83, 23–39.CrossRef
go back to reference Carpineto, N., Lacarbonara, W., & Vestroni, F. (2013). Hysteretic tuned mass dampers for structural vibration mitigation. Journal of Sound Vibrations, 333, 1302–1318.CrossRef Carpineto, N., Lacarbonara, W., & Vestroni, F. (2013). Hysteretic tuned mass dampers for structural vibration mitigation. Journal of Sound Vibrations, 333, 1302–1318.CrossRef
go back to reference Casalotti, A., & Lacarbonara, W. (2017). Tailoring of pinched hysteresis for nonlinear vibration absorption via asymptotic analysis. International Journal of Non-Linear Mechanics, 94, 59–71.CrossRef Casalotti, A., & Lacarbonara, W. (2017). Tailoring of pinched hysteresis for nonlinear vibration absorption via asymptotic analysis. International Journal of Non-Linear Mechanics, 94, 59–71.CrossRef
go back to reference Casini, P., & Vestroni, F. (2011). Characterization of bifurcating nonlinear normal modes in piecewise linear mechanical systems. International Journal of Non-Linear Mechanics, 46, 142–150.CrossRef Casini, P., & Vestroni, F. (2011). Characterization of bifurcating nonlinear normal modes in piecewise linear mechanical systems. International Journal of Non-Linear Mechanics, 46, 142–150.CrossRef
go back to reference Casini, P., & Vestroni, F. (2022). The role of the hysteretic restoring force on modal interactions in nonlinear dynamics. International Journal of Non-Linear Mechanics, 143, 104–209.CrossRef Casini, P., & Vestroni, F. (2022). The role of the hysteretic restoring force on modal interactions in nonlinear dynamics. International Journal of Non-Linear Mechanics, 143, 104–209.CrossRef
go back to reference Caughey, T. K. (1960). Sinusoidal excitation of a system with bilinear hysteresis. Journal of Applied Mechanics, 27(4), 640–643.MathSciNetCrossRef Caughey, T. K. (1960). Sinusoidal excitation of a system with bilinear hysteresis. Journal of Applied Mechanics, 27(4), 640–643.MathSciNetCrossRef
go back to reference Charalampakis, A. E., & Koumousis, V. K. (2008). Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. Journal of Sound and Vibration, 314, 571–585.CrossRef Charalampakis, A. E., & Koumousis, V. K. (2008). Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. Journal of Sound and Vibration, 314, 571–585.CrossRef
go back to reference Den Hartog, J. P. (1934). Mechanical vibrations. McGraw-Hill. Den Hartog, J. P. (1934). Mechanical vibrations. McGraw-Hill.
go back to reference Evangelista, L., Vittozzi, A., & Silvestri, G. (2009). Theoretical and experimental evaluation of the noise barriers behavior on high-speed lines. Ingegneria Ferroviaria, 64(1), 35–51. Evangelista, L., Vittozzi, A., & Silvestri, G. (2009). Theoretical and experimental evaluation of the noise barriers behavior on high-speed lines. Ingegneria Ferroviaria, 64(1), 35–51.
go back to reference Gatti, G. (2018). Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica, 53, 111–123.MathSciNetCrossRef Gatti, G. (2018). Fundamental insight on the performance of a nonlinear tuned mass damper. Meccanica, 53, 111–123.MathSciNetCrossRef
go back to reference Gendelman, O. V. (2004). Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dynamics, 37, 115–128.MathSciNetCrossRef Gendelman, O. V. (2004). Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dynamics, 37, 115–128.MathSciNetCrossRef
go back to reference Gourc, E., Michon, G., Seguy, S., & Berlioz, A. (2015). Targeted energy transfer under harmonic forcing with a vibroimpact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics, 137(3), 031008.CrossRef Gourc, E., Michon, G., Seguy, S., & Berlioz, A. (2015). Targeted energy transfer under harmonic forcing with a vibroimpact nonlinear energy sink: Analytical and experimental developments. Journal of Vibration and Acoustics, 137(3), 031008.CrossRef
go back to reference Habib, G., & Romeo, F. (2017). The tuned bistable nonlinear energy sink. Nonlinear Dynamics, 89(1), 179–196.CrossRef Habib, G., & Romeo, F. (2017). The tuned bistable nonlinear energy sink. Nonlinear Dynamics, 89(1), 179–196.CrossRef
go back to reference Habib, G., Kadar, F., & Papp, B. (2019). Impulsive vibration mitigation through a nonlinear tuned vibration absorber. Nonlinear Dynamics, 98(3), 2115–2130.CrossRef Habib, G., Kadar, F., & Papp, B. (2019). Impulsive vibration mitigation through a nonlinear tuned vibration absorber. Nonlinear Dynamics, 98(3), 2115–2130.CrossRef
go back to reference Haller, G., & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86, 1493–1534.MathSciNetCrossRef Haller, G., & Ponsioen, S. (2016). Nonlinear normal modes and spectral submanifolds: Existence, uniqueness and use in model reduction. Nonlinear Dynamics, 86, 1493–1534.MathSciNetCrossRef
go back to reference Hassani, V., Tjahjowidodo, T., & Do, T. N. (2014). A survey on hysteresis modeling, identification and control. Mechanical System and Signal Processing, 49, 209–233.CrossRef Hassani, V., Tjahjowidodo, T., & Do, T. N. (2014). A survey on hysteresis modeling, identification and control. Mechanical System and Signal Processing, 49, 209–233.CrossRef
go back to reference Hui, Y., Law, S., Zhu, W., & Wang, Q. (2021). Internal resonance of structure with hysteretic base isolation and its application for seismic mitigation. Engineering Structures, 229, 111–643.CrossRef Hui, Y., Law, S., Zhu, W., & Wang, Q. (2021). Internal resonance of structure with hysteretic base isolation and its application for seismic mitigation. Engineering Structures, 229, 111–643.CrossRef
go back to reference Ismail, M., Ikhouane, F., & Rodellar, J. (2009). The Hysteresis Bouc-Wen Model, a survey. Archives of Computational Methods in Enginnering, 16, 161–188.CrossRef Ismail, M., Ikhouane, F., & Rodellar, J. (2009). The Hysteresis Bouc-Wen Model, a survey. Archives of Computational Methods in Enginnering, 16, 161–188.CrossRef
go back to reference Iwan, W. D. (1965). The steady-state response of a two-degree-of-freedom bilinear hysteretic system. Journal of Applied Mechanics, 32, 151–156.MathSciNetCrossRef Iwan, W. D. (1965). The steady-state response of a two-degree-of-freedom bilinear hysteretic system. Journal of Applied Mechanics, 32, 151–156.MathSciNetCrossRef
go back to reference Jo, H., & Yabuno, H. (2009). Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dynamics, 55, 67–78.CrossRef Jo, H., & Yabuno, H. (2009). Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling. Nonlinear Dynamics, 55, 67–78.CrossRef
go back to reference Kalmár-Nagy, T., & Shekhawat, A. (2009). Nonlinear dynamics of oscillators with bilinear hysteresis and sinusoidal excitation. Physica d: Nonlinear Phenomena, 238, 1768–1786.MathSciNetCrossRef Kalmár-Nagy, T., & Shekhawat, A. (2009). Nonlinear dynamics of oscillators with bilinear hysteresis and sinusoidal excitation. Physica d: Nonlinear Phenomena, 238, 1768–1786.MathSciNetCrossRef
go back to reference Kerschen, G., Peeters, M., Golinval, J. C., & Vakakis, A. F. (2009). Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1), 170–194.CrossRef Kerschen, G., Peeters, M., Golinval, J. C., & Vakakis, A. F. (2009). Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mechanical Systems and Signal Processing, 23(1), 170–194.CrossRef
go back to reference Lacarbonara, W., & Vestroni, F. (2003). Nonclassical responses of oscillators with hysteresis. Nonlinear Dynamics, 32(3), 235–258.CrossRef Lacarbonara, W., & Vestroni, F. (2003). Nonclassical responses of oscillators with hysteresis. Nonlinear Dynamics, 32(3), 235–258.CrossRef
go back to reference Lamarque, C.-H., & Turi Savadkoohi, A. T. (2014). Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica, 49, 1917–1928.MathSciNetCrossRef Lamarque, C.-H., & Turi Savadkoohi, A. T. (2014). Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica, 49, 1917–1928.MathSciNetCrossRef
go back to reference Laxalde, D., Thouverez, F., & Sinou, J.-J. (2006). Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. International Journal of Non-Linear Mechanics, 41, 969–978.CrossRef Laxalde, D., Thouverez, F., & Sinou, J.-J. (2006). Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. International Journal of Non-Linear Mechanics, 41, 969–978.CrossRef
go back to reference Luongo, A., Rega, G., & Vestroni, F. (1984). Planar nonlinear free vibrations of an elastic cable. International Journal of Non-Linear Mechanics, 19(1), 39–52.CrossRef Luongo, A., Rega, G., & Vestroni, F. (1984). Planar nonlinear free vibrations of an elastic cable. International Journal of Non-Linear Mechanics, 19(1), 39–52.CrossRef
go back to reference Luongo, A., & Zulli, D. (2012). Dynamic analysis of externally excited nes-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dynamics, 70(3), 2049–2061.MathSciNetCrossRef Luongo, A., & Zulli, D. (2012). Dynamic analysis of externally excited nes-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dynamics, 70(3), 2049–2061.MathSciNetCrossRef
go back to reference Masiani, R., Capecchi, D., & Vestroni, F. (2002). Resonant and coupled response of hysteretic two-degree-of-freedom systems using harmonic balance method. International Journal of Non-Linear Mechanics, 37, 1421–1434.CrossRef Masiani, R., Capecchi, D., & Vestroni, F. (2002). Resonant and coupled response of hysteretic two-degree-of-freedom systems using harmonic balance method. International Journal of Non-Linear Mechanics, 37, 1421–1434.CrossRef
go back to reference Masri, S. F. (1975). Forced vibration of the damped bilinear hysteretic oscillator. Journal of Acoustical Society of America, 57, 106.CrossRef Masri, S. F. (1975). Forced vibration of the damped bilinear hysteretic oscillator. Journal of Acoustical Society of America, 57, 106.CrossRef
go back to reference Masuda, A., & Noori, M. (2002). Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys. International Journal of Non-Linear Mechanics, 37, 1375–1386.CrossRef Masuda, A., & Noori, M. (2002). Optimization of hysteretic characteristics of damping devices based on pseudoelastic shape memory alloys. International Journal of Non-Linear Mechanics, 37, 1375–1386.CrossRef
go back to reference Mayergoyz, I. (2003). Mathematical models of hysteresis and their applications. In Elsevier Series in Electromagnetism, Elsevier, New York. Mayergoyz, I. (2003). Mathematical models of hysteresis and their applications. In Elsevier Series in Electromagnetism, Elsevier, New York.
go back to reference Mikhlin, Y. V., & Avramov, K. V. (2015). Review of applications of nonlinear normal modes for vibrating mechanical systems. Applied Mechanics Reviews, 65(2), 020801. Mikhlin, Y. V., & Avramov, K. V. (2015). Review of applications of nonlinear normal modes for vibrating mechanical systems. Applied Mechanics Reviews, 65(2), 020801.
go back to reference Muravskii, G. B. (2005). Description of hysteretic behavior of materials. International Journal of Solids and Structures, 42(9–10), 2625–2644.CrossRef Muravskii, G. B. (2005). Description of hysteretic behavior of materials. International Journal of Solids and Structures, 42(9–10), 2625–2644.CrossRef
go back to reference Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics: Analytical, computational, and experimental methods. Wiley.CrossRef Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics: Analytical, computational, and experimental methods. Wiley.CrossRef
go back to reference Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. Wiley. Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. Wiley.
go back to reference Ni, Y. Q., Ko, J. M., & Wong, C. W. (1998). Identification of non-linear hysteretic isolators from periodic vibration tests. Journal of Sound and Vibrations, 217, 747–756.CrossRef Ni, Y. Q., Ko, J. M., & Wong, C. W. (1998). Identification of non-linear hysteretic isolators from periodic vibration tests. Journal of Sound and Vibrations, 217, 747–756.CrossRef
go back to reference Pak, C. H. (1989). On the stability behavior of bifurcated normal modes in coupled nonlinear systems. Journal of Applied Mechanics, 56, 155–161.MathSciNetCrossRef Pak, C. H. (1989). On the stability behavior of bifurcated normal modes in coupled nonlinear systems. Journal of Applied Mechanics, 56, 155–161.MathSciNetCrossRef
go back to reference Piccirillo, V., Bernardini, D., & Rega, G. (2017). Optimization of a pseudoelastic absorber for vibration mitigation. Procedia Engineering, 199, 1779–1784.CrossRef Piccirillo, V., Bernardini, D., & Rega, G. (2017). Optimization of a pseudoelastic absorber for vibration mitigation. Procedia Engineering, 199, 1779–1784.CrossRef
go back to reference Rand, R. H. (1971). A higher order approximation for non-linear normal modes in two degree of freedom systems. International Journal of Non-Linear Mechanics, 6(4), 545–547.CrossRef Rand, R. H. (1971). A higher order approximation for non-linear normal modes in two degree of freedom systems. International Journal of Non-Linear Mechanics, 6(4), 545–547.CrossRef
go back to reference Rand, R. H. (1974). A direct method for non-linear normal modes. International Journal of Non-Linear Mechanics, 9, 363–368.CrossRef Rand, R. H. (1974). A direct method for non-linear normal modes. International Journal of Non-Linear Mechanics, 9, 363–368.CrossRef
go back to reference Rand, R. H., Pak, C. H., & Vakakis, A. F. (1992). Bifurcation of nonlinear normal modes in a class of two degree of freedom systems. Acta Mechanica, 3, 129–145. Rand, R. H., Pak, C. H., & Vakakis, A. F. (1992). Bifurcation of nonlinear normal modes in a class of two degree of freedom systems. Acta Mechanica, 3, 129–145.
go back to reference Roberson, R. E. (1952). Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute, 254, 205–220.MathSciNetCrossRef Roberson, R. E. (1952). Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute, 254, 205–220.MathSciNetCrossRef
go back to reference Rosenberg, R. M. (1962). On normal vibrations of a general class of nonlinear dual-mode systems. Journal of Applied Mechanics, 29, 7–14.CrossRef Rosenberg, R. M. (1962). On normal vibrations of a general class of nonlinear dual-mode systems. Journal of Applied Mechanics, 29, 7–14.CrossRef
go back to reference Rosenberg, R. M. (1966). On nonlinear vibrations of a general class of nonlinear dual-mode systems. Advances in Applied Mechanics, 9, 155–242.CrossRef Rosenberg, R. M. (1966). On nonlinear vibrations of a general class of nonlinear dual-mode systems. Advances in Applied Mechanics, 9, 155–242.CrossRef
go back to reference Rustighi, E., Brennan, M. J., & Mace, B. R. (2005). A shape memory alloy adaptive tuned vibration absorber: Design and implementation. Smart Materials and Structures, 14, 19–28.CrossRef Rustighi, E., Brennan, M. J., & Mace, B. R. (2005). A shape memory alloy adaptive tuned vibration absorber: Design and implementation. Smart Materials and Structures, 14, 19–28.CrossRef
go back to reference Sauter, D., & Hagedorn, P. (2002). On the hysteresis of wire cables in Stockbridge dampers. International Journal of Non-Linear Mechanics, 37(8), 1453–1459.CrossRef Sauter, D., & Hagedorn, P. (2002). On the hysteresis of wire cables in Stockbridge dampers. International Journal of Non-Linear Mechanics, 37(8), 1453–1459.CrossRef
go back to reference Savi, M. (2015). Nonlinear dynamics and chaos in shape memory alloy systems. International Journal of Non-Linear Mechanics, 70, 2–19.CrossRef Savi, M. (2015). Nonlinear dynamics and chaos in shape memory alloy systems. International Journal of Non-Linear Mechanics, 70, 2–19.CrossRef
go back to reference Shaw, J., Shaw, S. W., & Haddow, A. G. (1989). On the response of the non-linear vibration absorber. International Journal of Non-Linear Mechanics, 24, 281–293.MathSciNetCrossRef Shaw, J., Shaw, S. W., & Haddow, A. G. (1989). On the response of the non-linear vibration absorber. International Journal of Non-Linear Mechanics, 24, 281–293.MathSciNetCrossRef
go back to reference Shaw, S. W., & Pierre, C. (1991). Nonlinear normal modes and invariant manifolds. Journal of Sound and Vibration, 150(1), 170–173.MathSciNetCrossRef Shaw, S. W., & Pierre, C. (1991). Nonlinear normal modes and invariant manifolds. Journal of Sound and Vibration, 150(1), 170–173.MathSciNetCrossRef
go back to reference Shaw, S. W., & Pierre, C. (1994). Normal modes of vibration for nonlinear continuous systems. Journal of Sound and Vibration, 169(3), 319–347.MathSciNetCrossRef Shaw, S. W., & Pierre, C. (1994). Normal modes of vibration for nonlinear continuous systems. Journal of Sound and Vibration, 169(3), 319–347.MathSciNetCrossRef
go back to reference Spanos, P. D., Di Matteo, A., & Pirrotta, A. (2019). Steady-state dynamic response of various hysteretic systems endowed with fractional derivative elements. Nonlinear Dynamics, 98(4), 3113–3124.CrossRef Spanos, P. D., Di Matteo, A., & Pirrotta, A. (2019). Steady-state dynamic response of various hysteretic systems endowed with fractional derivative elements. Nonlinear Dynamics, 98(4), 3113–3124.CrossRef
go back to reference Su, W. Q. (2018). The summary of design of railway sound barrier. Journal of Railway Engineering Society, 35(8), 86–91. Su, W. Q. (2018). The summary of design of railway sound barrier. Journal of Railway Engineering Society, 35(8), 86–91.
go back to reference Vaiana, N., & Rosati, L. (2023). Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing, 182, 109–539.CrossRef Vaiana, N., & Rosati, L. (2023). Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. Mechanical Systems and Signal Processing, 182, 109–539.CrossRef
go back to reference Vakakis, A. F. (1992). Non-similar normal oscillations in a strongly non-linear discrete system. Journal of Sound and Vibration, 158(2), 341–361.MathSciNetCrossRef Vakakis, A. F. (1992). Non-similar normal oscillations in a strongly non-linear discrete system. Journal of Sound and Vibration, 158(2), 341–361.MathSciNetCrossRef
go back to reference Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuck, V. N., & Zevin, A. A. (1996). Normal modes and localizations in nonlinear systems. Wiley.CrossRef Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuck, V. N., & Zevin, A. A. (1996). Normal modes and localizations in nonlinear systems. Wiley.CrossRef
go back to reference Vakakis, A. F., Manevitch, L., Gendelman, O., & Bergman, L. (2003). Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Sound and Vibration, 264(3), 559–577.CrossRef Vakakis, A. F., Manevitch, L., Gendelman, O., & Bergman, L. (2003). Dynamics of linear discrete systems connected to local, essentially non-linear attachments. Journal of Sound and Vibration, 264(3), 559–577.CrossRef
go back to reference Vakakis, A. F. (2017). Intentional utilization of strong nonlinearity in structural dynamics. Procedia Engineering, 199, 70–77.CrossRef Vakakis, A. F. (2017). Intentional utilization of strong nonlinearity in structural dynamics. Procedia Engineering, 199, 70–77.CrossRef
go back to reference Vestroni, F., & Noori, M. (2002). Hysteresis in mechanical systems: Modeling and dynamic response. International Journal of Non-Linear Mechanics, 37(8), 1261–1262.CrossRef Vestroni, F., & Noori, M. (2002). Hysteresis in mechanical systems: Modeling and dynamic response. International Journal of Non-Linear Mechanics, 37(8), 1261–1262.CrossRef
go back to reference Vestroni, F., Luongo, A., & Paolone, A. (2008). A perturbation method for evaluating nonlinear normal modes of a piecewise linear 2-DOF system. Nonlinear Dynamics, 54, 379–393.MathSciNetCrossRef Vestroni, F., Luongo, A., & Paolone, A. (2008). A perturbation method for evaluating nonlinear normal modes of a piecewise linear 2-DOF system. Nonlinear Dynamics, 54, 379–393.MathSciNetCrossRef
go back to reference Vestroni, F., & Casini, P. (2020). Mitigation of structural vibrations by hysteretic oscillators in internal resonance. Nonlinear Dynamics, 99, 505–518.CrossRef Vestroni, F., & Casini, P. (2020). Mitigation of structural vibrations by hysteretic oscillators in internal resonance. Nonlinear Dynamics, 99, 505–518.CrossRef
go back to reference Wen, Y. K. (1976). Method of random vibration of hysteretic systems. ASCE Journal of Engineering Mechanics, 102(2), 249–263. Wen, Y. K. (1976). Method of random vibration of hysteretic systems. ASCE Journal of Engineering Mechanics, 102(2), 249–263.
go back to reference Wiercigroch, M., & de Kraker, B. (2000). Applied nonlinear dynamics and Chaos of mechanical systems with discontinuities. In World Scientific Series in Nonlinear Science, Series A, Vol. 28. Wiercigroch, M., & de Kraker, B. (2000). Applied nonlinear dynamics and Chaos of mechanical systems with discontinuities. In World Scientific Series in Nonlinear Science, Series A, Vol. 28.
go back to reference Zhang, Z., Tian, X., & Ge, X. (2021). Dynamic characteristics of the Bouc-Wen nonlinear isolation system. Applied Sciences, 11, 6106.CrossRef Zhang, Z., Tian, X., & Ge, X. (2021). Dynamic characteristics of the Bouc-Wen nonlinear isolation system. Applied Sciences, 11, 6106.CrossRef
Metadata
Title
Hysteretic Systems: Resonances, Modal Coupling, Mitigation
Authors
Fabrizio Vestroni
Paolo Casini
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56902-9_6

Premium Partners