Skip to main content
Top

2016 | OriginalPaper | Chapter

8. Identification of Aerodynamic Properties of Bridge Decks in Arbitrary Motion

Authors : Bartosz Siedziako, Ole Øiseth, Nils Erik Anders Rønnquist

Published in: Special Topics in Structural Dynamics, Volume 6

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flutter, buffeting response and vortex shedding are crucial factors when designing long-span bridges. An analysis of these phenomena requires experimental data, which can be provided by wind tunnel tests. The forced vibration method is chosen in this study because it is considered to be more reliable and better suited to provide data at high velocities, large amplitudes and more intense turbulence. The models currently used to describe self-excited forces in bridge engineering are linear. However, it is a well-known fact that the principle of superposition does not hold in fluid dynamics. Several case studies have shown that it is a fair approximation when predicting wind-induced dynamic response of bridges if the response is dominated by one vibration mode in each direction. Yet, it is uncertain how well the current models will be able to predict the self-excited forces for a more complicated motion. Currently developing experimental setup will enable the performance of forced vibration tests by applying an arbitrary motion. This paper focuses on extending three identification methods developed for single harmonic motion such that they can be applied in more complex motion patterns. Numerical simulations of forced vibration tests were performed to test the performance of those extended methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Diana, G., Fiammenghi, G., Belloli, M., Rocchi, D.: Wind tunnel tests and numerical approach for long span bridges: the Messina bridge. J. Wind Eng. Ind. Aerodyn. 122, 38–49 (2013)CrossRef Diana, G., Fiammenghi, G., Belloli, M., Rocchi, D.: Wind tunnel tests and numerical approach for long span bridges: the Messina bridge. J. Wind Eng. Ind. Aerodyn. 122, 38–49 (2013)CrossRef
2.
go back to reference Zasso, A., Belloli, M., Argentini, T., Flamand, O., Knapp, G., Grillaud, G., Klein, J.F., Virlogeuxm M. de Ville, V.: Third Bosporus Bridge aerodynamics: Sectional and fulll-aerolastic model testing. Proceedings of the Istanbul Bridge Conference. (2014) Zasso, A., Belloli, M., Argentini, T., Flamand, O., Knapp, G., Grillaud, G., Klein, J.F., Virlogeuxm M. de Ville, V.: Third Bosporus Bridge aerodynamics: Sectional and fulll-aerolastic model testing. Proceedings of the Istanbul Bridge Conference. (2014)
3.
go back to reference Ge, Y.J., Xiang, H.F.: Recent development of bridge aerodynamics in China. J. Wind Eng. Ind. Aerodyn. 96, 736–768 (2008)CrossRef Ge, Y.J., Xiang, H.F.: Recent development of bridge aerodynamics in China. J. Wind Eng. Ind. Aerodyn. 96, 736–768 (2008)CrossRef
4.
go back to reference Diana G., Rocchi D., Belloli M.: Wind tunnel: a fundamental tool for long-span bridge design. Struct. Infrastruct. Eng. 11(4), 533–555 (2015) Diana G., Rocchi D., Belloli M.: Wind tunnel: a fundamental tool for long-span bridge design. Struct. Infrastruct. Eng. 11(4), 533–555 (2015)
5.
go back to reference Cao, B., Sarkar, P.P.: Identification of Rational Functions using two-degree-of-freedom model by forced vibration method. Eng. Struct. 43, 21–30 (2012)CrossRef Cao, B., Sarkar, P.P.: Identification of Rational Functions using two-degree-of-freedom model by forced vibration method. Eng. Struct. 43, 21–30 (2012)CrossRef
6.
go back to reference Sarkar, P.P., Caracoglia, L., Haan, F.L., Sato, H., Murakoshi, J.: Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, part 1: analysis of inter-laboratory experimental data. Eng. Struct. 31(1), 158–169 (2009)CrossRef Sarkar, P.P., Caracoglia, L., Haan, F.L., Sato, H., Murakoshi, J.: Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, part 1: analysis of inter-laboratory experimental data. Eng. Struct. 31(1), 158–169 (2009)CrossRef
7.
go back to reference Chen, Z.Q., Yu, X.D., Yang, G., Spencer, B.F.: Wind-induced self-excited loads on bridges. J. Struct. Eng. 131, 1783–1793 (2005)CrossRef Chen, Z.Q., Yu, X.D., Yang, G., Spencer, B.F.: Wind-induced self-excited loads on bridges. J. Struct. Eng. 131, 1783–1793 (2005)CrossRef
8.
go back to reference Han, Y., Liu, S., Hu, J.X., Cai, C.S., Zhang, J., Chen, Z.: Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows. J. Wind Eng. Ind. Aerodyn. 133, 250–262 (2014)CrossRef Han, Y., Liu, S., Hu, J.X., Cai, C.S., Zhang, J., Chen, Z.: Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows. J. Wind Eng. Ind. Aerodyn. 133, 250–262 (2014)CrossRef
9.
go back to reference Scanlan, R.H., Tomko, J.: Airfoil and bride deck flutter derivatives. J. Eng. Mech. Div. 97(6), 1717–33 (1971) Scanlan, R.H., Tomko, J.: Airfoil and bride deck flutter derivatives. J. Eng. Mech. Div. 97(6), 1717–33 (1971)
10.
go back to reference Roger, K.L.: Airplane math modeling and active aeroelastic control design[C]. Agard-Cp-228 228 AGARD, 4.1–4.11 (1977) Roger, K.L.: Airplane math modeling and active aeroelastic control design[C]. Agard-Cp-228 228 AGARD, 4.1–4.11 (1977)
11.
go back to reference Karpel, M.: Design for active and passive flutter suppression and gust alleviation. NASA contractor report No. 3482 (1981) Karpel, M.: Design for active and passive flutter suppression and gust alleviation. NASA contractor report No. 3482 (1981)
12.
go back to reference Chen, X., Matsumoto, M., Kareem, A.: Time domain flutter and buffeting response analysis of bridges. J. Eng. Mech. 126(1), 7–16 (2000)CrossRef Chen, X., Matsumoto, M., Kareem, A.: Time domain flutter and buffeting response analysis of bridges. J. Eng. Mech. 126(1), 7–16 (2000)CrossRef
13.
go back to reference Øiseth, O., Rönnquist, A., Sigbjörnsson, R.: Time domain modeling of self-excited aerodynamic forces for cable-supported bridges: A comparative study. Comput. Struct. 89(13–14), 1306–1322 (2011)CrossRef Øiseth, O., Rönnquist, A., Sigbjörnsson, R.: Time domain modeling of self-excited aerodynamic forces for cable-supported bridges: A comparative study. Comput. Struct. 89(13–14), 1306–1322 (2011)CrossRef
14.
go back to reference Neuhaus, C., Mikkelsen, O., Bogunovi, J., Höffer, R., Zahlten, W.: Time domain representations of unsteady aeroelastic wind forces by rational function approximations. In: EACWE 5 Florence, Italy 19th–23rd July 2009, vol. 49, July 1–12 2009 Neuhaus, C., Mikkelsen, O., Bogunovi, J., Höffer, R., Zahlten, W.: Time domain representations of unsteady aeroelastic wind forces by rational function approximations. In: EACWE 5 Florence, Italy 19th–23rd July 2009, vol. 49, July 1–12 2009
15.
go back to reference Chowdhury, A.G., Sarkar, P.P.: Experimental identification of rational function coefficients for time-domain flutter analysis. Eng. Struct. 27, 1349–1364 (2005)CrossRef Chowdhury, A.G., Sarkar, P.P.: Experimental identification of rational function coefficients for time-domain flutter analysis. Eng. Struct. 27, 1349–1364 (2005)CrossRef
16.
go back to reference Cao, B., Sarkar, P.P.: Identification of Rational Functions by Forced Vibration Method for Time-Domain Analysis of Flexible Structures. In Proceedings of The Fifth International Symposium on Computational Wind Engineering (2010) Cao, B., Sarkar, P.P.: Identification of Rational Functions by Forced Vibration Method for Time-Domain Analysis of Flexible Structures. In Proceedings of The Fifth International Symposium on Computational Wind Engineering (2010)
17.
go back to reference Cao, B.: Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind. Graduate Theses and Dissertations. Paper 12290 (2012) Cao, B.: Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind. Graduate Theses and Dissertations. Paper 12290 (2012)
18.
go back to reference Chowdhury, A.G.: Identification of frequency domain and time domain aeroelastic parameters for flutter analysis of flexible structures. Retrospective Theses and Dissertations. Paper 778 (2004) Chowdhury, A.G.: Identification of frequency domain and time domain aeroelastic parameters for flutter analysis of flexible structures. Retrospective Theses and Dissertations. Paper 778 (2004)
19.
go back to reference Svend Ole Hansen ApS. The Hardanger Bridge. Static and dynamic wind tunnel tests with a section model. Prepared for: Norwegian Public Roads Administration, Revision 2, March 2009 Svend Ole Hansen ApS. The Hardanger Bridge. Static and dynamic wind tunnel tests with a section model. Prepared for: Norwegian Public Roads Administration, Revision 2, March 2009
20.
go back to reference Øiseth, O., Rönnquist, A., Sigbjörnsson, R.: Finite element formulation of the self-excited forces for time-domain assessment of wind-induced dynamic response and flutter stability limit of cable-supported bridges. Finite Elem. Anal. Des. 50, 173–183 (2012)CrossRef Øiseth, O., Rönnquist, A., Sigbjörnsson, R.: Finite element formulation of the self-excited forces for time-domain assessment of wind-induced dynamic response and flutter stability limit of cable-supported bridges. Finite Elem. Anal. Des. 50, 173–183 (2012)CrossRef
Metadata
Title
Identification of Aerodynamic Properties of Bridge Decks in Arbitrary Motion
Authors
Bartosz Siedziako
Ole Øiseth
Nils Erik Anders Rønnquist
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29910-5_8

Premium Partners