Skip to main content
Top

2025 | OriginalPaper | Chapter

Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensing

Authors : Andrew L. Jensen, William A. Redford, Nimran P. Shergill, Luke B. Beardslee, Carly M. Donahue

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The health of an ecosystem can be challenging to monitor due to the complex nature of environmental systems. Fortunately, the health of a local ecosystem can be inferred by monitoring key species which are indicative of the overall health of the ecosystem. Microphones have emerged as a powerful tool for detecting bird calls of these key indicator species. However, using an array of microphones to monitor a large area requires a power source at each location in addition to sensor telemetry to retrieve the data. Distributed acoustic sensing (DAS) is a promising approach for large scale monitoring as a single hardware system is used to detect signals over large distances. We propose a novel application of DAS to detect avian species for ecological health monitoring. A single DAS interrogator unit and optical fiber can collect tens of kilometers of high frequency acoustic data with the added benefit that DAS does not suffer from time synchronization errors and remote power issues like traditional microphone arrays. This work investigates the performance of DAS when used to detect bird calls, with particular focus on the Great Horned Owl (GHO), an indicator species for prey vulnerability in an ecosystem. By quantifying the performance of several DAS configurations and bird call detection approaches, we demonstrate the potential of DAS for use in ecological health monitoring applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mekonen, S.: Birds as biodiversity and environmental indicator. J. Nat. Sci. Res. 7(21) (2017) Mekonen, S.: Birds as biodiversity and environmental indicator. J. Nat. Sci. Res. 7(21) (2017)
8.
go back to reference Trnkoczy, A.: Understanding and Parameter Setting of STA/LTA Trigger Algorithm (1999) Trnkoczy, A.: Understanding and Parameter Setting of STA/LTA Trigger Algorithm (1999)
Metadata
Title
Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensing
Authors
Andrew L. Jensen
William A. Redford
Nimran P. Shergill
Luke B. Beardslee
Carly M. Donahue
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_13