Skip to main content
Top
Published in:

01-12-2023 | Original Article

Identification of clickbait news articles using SBERT and correlation matrix

Authors: Supriya, Jyoti Prakash Singh, Gunjan Kumar

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clickbait refers to the practice of using attention-grabbing or misleading headlines to attract readers to click on particular headlines or pieces of content. This technique often involves exaggerating claims or adding false information to attract traffic. In general, clickbait headlines are unlike standard news posts or detailed articles where headlines are highly correlated with body content. In the proposed system, the dissimilarity between the headline and detailed articles is exploited to create features from headlines and its paragraph by using sentence bidirectional encoder representation from transformer (SBERT). Since the size of the paragraph is quite large compared to the headlines, only k where \(k < l\) (total sentences in a paragraph) sentences from the paragraph are selected using a correlation matrix. The extracted features from the headlines, target title and selected sentences of the paragraph are concatenated and classified using machine learning (ML) classifiers. The proposed model was tested extensively on two real-world datasets, and the results showed that it performed better than the current state-of-the-art models. In experimental results, a support vector machine (SVM) classifier with the concatenated embedding of \(k=6\) dissimilar sentences from paragraph exhibited the best performance with an accuracy of 0.84, weighted precision of 0.83, weighted recall of 0.84, and weighted \(F_1\)-score of 0.82 surpassing the state-of-the-art model by 8.8% in terms of \(F_1\)-score.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agrawal A (2016) Clickbait detection using deep learning. In: 2nd International conference on next generation computing technologies (NGCT), pp 268–272 Agrawal A (2016) Clickbait detection using deep learning. In: 2nd International conference on next generation computing technologies (NGCT), pp 268–272
go back to reference Al-Sarem M, Saeed F, Al-Mekhlafi ZG, Mohammed BA, Hadwan M, Al-Hadhrami T et al (2021) An improved multiple features and machine learning-based approach for detecting clickbait news on social networks. Appl Sci 11(20):9487CrossRef Al-Sarem M, Saeed F, Al-Mekhlafi ZG, Mohammed BA, Hadwan M, Al-Hadhrami T et al (2021) An improved multiple features and machine learning-based approach for detecting clickbait news on social networks. Appl Sci 11(20):9487CrossRef
go back to reference Biyani P, Tsioutsiouliklis K, Blackmer J (2016) “8 Amazing secrets for getting more clicks”: detecting Clickbaits in news streams using article informality. In: AAAI Conference on artificial intelligence, vol 30, no 1, pp 94–100 Biyani P, Tsioutsiouliklis K, Blackmer J (2016) “8 Amazing secrets for getting more clicks”: detecting Clickbaits in news streams using article informality. In: AAAI Conference on artificial intelligence, vol 30, no 1, pp 94–100
go back to reference Bronakowski M, Al-khassaweneh M, Al-Bataineh A (2023) Automatic detection of clickbait headlines using semantic analysis and machine learning techniques. Appl Sci 13(4):2456CrossRef Bronakowski M, Al-khassaweneh M, Al-Bataineh A (2023) Automatic detection of clickbait headlines using semantic analysis and machine learning techniques. Appl Sci 13(4):2456CrossRef
go back to reference Chakraborty A, Paranjape B, Kakarla S, Ganguly N (2016) Stop clickbait: detecting and preventing clickbaits in online news media. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 9–16 Chakraborty A, Paranjape B, Kakarla S, Ganguly N (2016) Stop clickbait: detecting and preventing clickbaits in online news media. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 9–16
go back to reference Chawda S, Patil A, Singh A, Save AM. (2019) A novel approach for clickbait detection. In: 2019 3rd International conference on trends in electronics and informatics (ICOEI), pp. 1318–1321 Chawda S, Patil A, Singh A, Save AM. (2019) A novel approach for clickbait detection. In: 2019 3rd International conference on trends in electronics and informatics (ICOEI), pp. 1318–1321
go back to reference Coste CI, Bufnea D (2021) Advances in clickbait and fake news detection using new language-independent strategies. J Commun Softw Syst 17(3):270–280CrossRef Coste CI, Bufnea D (2021) Advances in clickbait and fake news detection using new language-independent strategies. J Commun Softw Syst 17(3):270–280CrossRef
go back to reference Geckil A, Mungen AA, Gündogan E, Kaya M (2018) A clickbait detection method on news sites. In: 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 932–937 Geckil A, Mungen AA, Gündogan E, Kaya M (2018) A clickbait detection method on news sites. In: 2018 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 932–937
go back to reference Glenski M, Ayton E, Arendt DL, Volkova S. (2017) Fishing for clickbaits in social images and texts with linguistically-infused neural network models. arXiv:1710.06390 Glenski M, Ayton E, Arendt DL, Volkova S. (2017) Fishing for clickbaits in social images and texts with linguistically-infused neural network models. arXiv:​1710.​06390
go back to reference Gupta S, Sharaff A, Nagwani NK (2023a) Control stochastic selection-based biomedical text summarization using Sim-TLBO. Arab J Sci Eng 1–15 Gupta S, Sharaff A, Nagwani NK (2023a) Control stochastic selection-based biomedical text summarization using Sim-TLBO. Arab J Sci Eng 1–15
go back to reference Gupta S, Sharaff A, Nagwani NK (2023b) Frequent item-set mining and clustering based ranked biomedical text summarization. J Supercomput 79–1:139–159 Gupta S, Sharaff A, Nagwani NK (2023b) Frequent item-set mining and clustering based ranked biomedical text summarization. J Supercomput 79–1:139–159
go back to reference Kaur S, Kumar P, Kumaraguru P (2020) Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model. Expert Syst Appl 151:113350CrossRef Kaur S, Kumar P, Kumaraguru P (2020) Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model. Expert Syst Appl 151:113350CrossRef
go back to reference Klairith P, Tanachutiwat S (2018) Thai clickbait detection algorithms using natural language processing with machine learning techniques. In: 2018 International conference on engineering, applied sciences, and technology (ICEAST), pp 1–4 Klairith P, Tanachutiwat S (2018) Thai clickbait detection algorithms using natural language processing with machine learning techniques. In: 2018 International conference on engineering, applied sciences, and technology (ICEAST), pp 1–4
go back to reference Kumar V, Khattar D, Gairola S, Lal YK, Varma V. (2018) Identifying clickbait: a multi-strategy approach using neural networks. In: The 41st international ACM SIGIR conference on research & development in information retrieval, pp 1225–1228 Kumar V, Khattar D, Gairola S, Lal YK, Varma V. (2018) Identifying clickbait: a multi-strategy approach using neural networks. In: The 41st international ACM SIGIR conference on research & development in information retrieval, pp 1225–1228
go back to reference Kumar AP, Nayak A, Shenoy M (2019) A statistical approach to evaluate the efficiency and effectiveness of the machine learning algorithms analyzing sentiments. In: 2019 IEEE international conference on distributed computing, vlsi, electrical circuits and robotics (DISCOVER) pp 1–6 Kumar AP, Nayak A, Shenoy M (2019) A statistical approach to evaluate the efficiency and effectiveness of the machine learning algorithms analyzing sentiments. In: 2019 IEEE international conference on distributed computing, vlsi, electrical circuits and robotics (DISCOVER) pp 1–6
go back to reference Liu T, Yu K, Wang L, Zhang X, Zhou H, Wu X (2022) Clickbait detection on Wechat: a deep model integrating semantic and syntactic information. Knowl Based Syst 245:108605CrossRef Liu T, Yu K, Wang L, Zhang X, Zhou H, Wu X (2022) Clickbait detection on Wechat: a deep model integrating semantic and syntactic information. Knowl Based Syst 245:108605CrossRef
go back to reference Loewenstein G (1994) The psychology of curiosity: a review and reinterpretation. Psychol Bull 116(1):75–98CrossRef Loewenstein G (1994) The psychology of curiosity: a review and reinterpretation. Psychol Bull 116(1):75–98CrossRef
go back to reference Ma YW, Chen JL, Chen LD, Huang YM (2022) Intelligent clickbait news detection system based on artificial intelligence and feature engineering. IEEE Trans Eng Manag 1–10 Ma YW, Chen JL, Chen LD, Huang YM (2022) Intelligent clickbait news detection system based on artificial intelligence and feature engineering. IEEE Trans Eng Manag 1–10
go back to reference Manjesh S, Kanakagiri T, Vaishak P, Chettiar V, Shobha GH (2017) Clickbait pattern detection and classification of news headlines using natural language processing. In: 2017 2nd International conference on computational systems and information technology for sustainable solution (CSITSS), pp 1–5 Manjesh S, Kanakagiri T, Vaishak P, Chettiar V, Shobha GH (2017) Clickbait pattern detection and classification of news headlines using natural language processing. In: 2017 2nd International conference on computational systems and information technology for sustainable solution (CSITSS), pp 1–5
go back to reference Meng Q, Liu B, Sun X, Yan H, Liang C, Cao J et al (2022) Attention-fused deep relevancy matching network for clickbait detection. IEEE Trans Comput Soc Syst 1–12 Meng Q, Liu B, Sun X, Yan H, Liang C, Cao J et al (2022) Attention-fused deep relevancy matching network for clickbait detection. IEEE Trans Comput Soc Syst 1–12
go back to reference Naeem B, Khan AA, Beg MO, Mujtaba H (2020) A deep learning framework for clickbait detection on social area network using natural language cues. J Comput Soc Sci 3:231–243CrossRef Naeem B, Khan AA, Beg MO, Mujtaba H (2020) A deep learning framework for clickbait detection on social area network using natural language cues. J Comput Soc Sci 3:231–243CrossRef
go back to reference Papadopoulou O, Zampoglou M, Papadopoulos S, Kompatsiaris I (2017) A two-level classification approach for detecting clickbait posts using text-based features. arXiv preprint arXiv:1710.08528 Papadopoulou O, Zampoglou M, Papadopoulos S, Kompatsiaris I (2017) A two-level classification approach for detecting clickbait posts using text-based features. arXiv preprint arXiv:​1710.​08528
go back to reference Pandey S, Kaur G (2018) Curious to click it?—Identifying clickbait using deep learning and evolutionary algorithm. In: 2018 International conference on advances in computing, communications and informatics (ICACCI), pp 1481–1487 Pandey S, Kaur G (2018) Curious to click it?—Identifying clickbait using deep learning and evolutionary algorithm. In: 2018 International conference on advances in computing, communications and informatics (ICACCI), pp 1481–1487
go back to reference Patil S, Koul M, Chauhan H, Patil P (2021) Detecting and categorization of click baits. Int J Eng Res Technol (IJERT) 09(3):449–454 Patil S, Koul M, Chauhan H, Patil P (2021) Detecting and categorization of click baits. Int J Eng Res Technol (IJERT) 09(3):449–454
go back to reference Reimers N, Gurevych I (2019) Sentence-BERT: Sentence Embeddings using Siamese BERT-networks. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 3982–3992. https://doi.org/10.18653/v1/D19-1410 Reimers N, Gurevych I (2019) Sentence-BERT: Sentence Embeddings using Siamese BERT-networks. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 3982–3992. https://​doi.​org/​10.​18653/​v1/​D19-1410
go back to reference Srinivasarao U, Sharaff A (2023) Spam email classification and sentiment analysis based on semantic similarity methods. Int J Comput Sci Eng 26(1):65–77 Srinivasarao U, Sharaff A (2023) Spam email classification and sentiment analysis based on semantic similarity methods. Int J Comput Sci Eng 26(1):65–77
go back to reference Varshney D, Vishwakarma DK (2021) A unified approach for detection of Clickbait videos on YouTube using cognitive evidences. Appl Intell (Dordrecht, Netherlands) 51:4214–4235 Varshney D, Vishwakarma DK (2021) A unified approach for detection of Clickbait videos on YouTube using cognitive evidences. Appl Intell (Dordrecht, Netherlands) 51:4214–4235
go back to reference Zheng J, Yu K, Wu X (2021) A deep model based on lure and similarity for adaptive clickbait detection. Knowl Based Syst 214:106714CrossRef Zheng J, Yu K, Wu X (2021) A deep model based on lure and similarity for adaptive clickbait detection. Knowl Based Syst 214:106714CrossRef
Metadata
Title
Identification of clickbait news articles using SBERT and correlation matrix
Authors
Supriya
Jyoti Prakash Singh
Gunjan Kumar
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01162-0

Premium Partner