Skip to main content
Top

2024 | OriginalPaper | Chapter

Identification of Parameters of Mechanical Vibrating Systems Using the Amplitude-Frequency Relationship in Analytical Form

Authors : Grażyna Sypniewska-Kamińska, Jan Awrejcewicz

Published in: Perspectives in Dynamical Systems I — Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The subject of the paper is the concept of a method serving to the determination of the parameters that describe the damping and nonlinear elastic properties of mechanical vibrating systems. The possibility of the identification is provided by the analytical form of the relationship between the amplitude and frequency of periodic steady oscillations in the main resonance. The dependence is obtained using the multiple scale method (MSM) in the domain of time. The proposed method applies only when this dependency reduces to an algebraic equation of the third degree. The considerations for a single degree of freedom system described by the Duffing equation explain the main idea of the identification. However, under certain assumptions, the method can also be employed for systems with several degrees of freedom. The numerical simulations of the real experiment were carried out and discussed. The results confirm the usefulness and accuracy of the method and lead to practical conclusions determining the conditions for performing measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adhikari S., Woodhouse J.: Identification of damping: Part 1, Viscous damping. Journal of Sound and Vibration, 243(1), 43–61 (2001).CrossRef Adhikari S., Woodhouse J.: Identification of damping: Part 1, Viscous damping. Journal of Sound and Vibration, 243(1), 43–61 (2001).CrossRef
2.
go back to reference de Silva C.W. (ed): Vibration and shock handbook. CRC Press, Boca Raton, (2007). de Silva C.W. (ed): Vibration and shock handbook. CRC Press, Boca Raton, (2007).
3.
go back to reference Landau L.D., Lifshitz E.M.: Mechanics. Course of theoretical physics. Butterworth-Heinemann, Oxford, 1976. Landau L.D., Lifshitz E.M.: Mechanics. Course of theoretical physics. Butterworth-Heinemann, Oxford, 1976.
4.
go back to reference Henn M.I., Yang Q., Lu M.: Simulation study on the structure of the added air mass layer around a vibrating membrane. Journal of Wind & Industrial Aerodynamics 184, 289–295 (2019).CrossRef Henn M.I., Yang Q., Lu M.: Simulation study on the structure of the added air mass layer around a vibrating membrane. Journal of Wind & Industrial Aerodynamics 184, 289–295 (2019).CrossRef
5.
6.
go back to reference Bert C.W.: Material damping: an introductory review of mathematical models, measure and experimental techniques, Journal of Sound and Vibration, 29(2), 129–153 (1973).MathSciNetCrossRef Bert C.W.: Material damping: an introductory review of mathematical models, measure and experimental techniques, Journal of Sound and Vibration, 29(2), 129–153 (1973).MathSciNetCrossRef
7.
go back to reference Lakes R.S.: Viscoelastic Solids, CRC Press, Boca Raton, (1999). Lakes R.S.: Viscoelastic Solids, CRC Press, Boca Raton, (1999).
8.
go back to reference Lorenz H.: Lehrbuchder Technischen Physik. Technische Mechanik starrer Gebilde, Springer, Berlin-Heilderberg (1924). Lorenz H.: Lehrbuchder Technischen Physik. Technische Mechanik starrer Gebilde, Springer, Berlin-Heilderberg (1924).
9.
go back to reference Srikantha P., Woodhouse J.: Viscous damping identification in linear vibration. Journal of Sound and Vibration 303, 475–500 (2007).CrossRef Srikantha P., Woodhouse J.: Viscous damping identification in linear vibration. Journal of Sound and Vibration 303, 475–500 (2007).CrossRef
10.
go back to reference Listano D., Bonisoli E.: Direct identification of nonlinear damping: application to a magnetic damped system, Mechanical Systems and Signal Processing 146, 107038 (2021).CrossRef Listano D., Bonisoli E.: Direct identification of nonlinear damping: application to a magnetic damped system, Mechanical Systems and Signal Processing 146, 107038 (2021).CrossRef
11.
go back to reference Adhikari S., Woodhouse J.: Identification of damping: Part 2, Non-viscous damping. Journal of Sound and Vibration, 243(1), 63–88 (2001).CrossRef Adhikari S., Woodhouse J.: Identification of damping: Part 2, Non-viscous damping. Journal of Sound and Vibration, 243(1), 63–88 (2001).CrossRef
12.
go back to reference Salamon R., Kamiński H., Fritzkowski P.: Estimation of parameters of various damping models in planar motion of a pendulum, Meccanica 55, 1655–1677 (2020).MathSciNetCrossRef Salamon R., Kamiński H., Fritzkowski P.: Estimation of parameters of various damping models in planar motion of a pendulum, Meccanica 55, 1655–1677 (2020).MathSciNetCrossRef
13.
go back to reference Tomac I., Slavic J.: Damping identification based on high-speed camera, Mechanical Systems and Signal Processing 166, 108485 (2022).CrossRef Tomac I., Slavic J.: Damping identification based on high-speed camera, Mechanical Systems and Signal Processing 166, 108485 (2022).CrossRef
14.
go back to reference Kalmar-Nagy, T., Balachandran B.: Forced harmonic vibration of a Duffing oscillator with linear viscous damping. In: The Duffing Equation. Nonlinear Oscillators and their Behaviour ed. by Kovacic, I., Brennan M.J., pp. 139–174. Wiley&Sons (2011).CrossRef Kalmar-Nagy, T., Balachandran B.: Forced harmonic vibration of a Duffing oscillator with linear viscous damping. In: The Duffing Equation. Nonlinear Oscillators and their Behaviour ed. by Kovacic, I., Brennan M.J., pp. 139–174. Wiley&Sons (2011).CrossRef
15.
go back to reference Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley&Sons, New York, (1995). Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley&Sons, New York, (1995).
16.
go back to reference Awrejcewicz, J., Krysko, V.A.: Introduction to asymptotic methods. Chapman and Hall, Boca Raton (2006). Awrejcewicz, J., Krysko, V.A.: Introduction to asymptotic methods. Chapman and Hall, Boca Raton (2006).
17.
go back to reference Brennan M.J., Kovacic I.: Examples of physical systems described by the Diffing equation. In: The Duffing Equation. Nonlinear Oscillators and their Behaviour ed. by Kovacic, I., Brennan M.J., pp. 25–53. Wiley&Sons (2011).CrossRef Brennan M.J., Kovacic I.: Examples of physical systems described by the Diffing equation. In: The Duffing Equation. Nonlinear Oscillators and their Behaviour ed. by Kovacic, I., Brennan M.J., pp. 25–53. Wiley&Sons (2011).CrossRef
18.
go back to reference Awrejcewicz J., Sypniewska-Kamińska G., Mazur O.: Analysing regular nonlinear vibrations of nano/micro plates based on the nonlocal theory and combination of reduced order modelling and multiple scale method, Mechanical Systems and Signal Processing 163, 108132 (2022).CrossRef Awrejcewicz J., Sypniewska-Kamińska G., Mazur O.: Analysing regular nonlinear vibrations of nano/micro plates based on the nonlocal theory and combination of reduced order modelling and multiple scale method, Mechanical Systems and Signal Processing 163, 108132 (2022).CrossRef
Metadata
Title
Identification of Parameters of Mechanical Vibrating Systems Using the Amplitude-Frequency Relationship in Analytical Form
Authors
Grażyna Sypniewska-Kamińska
Jan Awrejcewicz
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-56492-5_38

Premium Partners