Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

04-10-2019 | Research Article | Issue 1/2020

Cognitive Neurodynamics 1/2020

Identification of vowels in consonant–vowel–consonant words from speech imagery based EEG signals

Journal:
Cognitive Neurodynamics > Issue 1/2020
Authors:
Sandhya Chengaiyan, Anandha Sree Retnapandian, Kavitha Anandan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Retrieval of unintelligible speech is a basic need for speech impaired and is under research for several decades. But retrieval of random words from thoughts needs a substantial and consistent approach. This work focuses on the preliminary steps of retrieving vowels from Electroencephalography (EEG) signals acquired while speaking and imagining of speaking a consonant–vowel–consonant (CVC) word. The process, referred to as Speech imagery is imagining of speaking to oneself silently in the mind. Speech imagery is a form of mental imagery. Brain connectivity estimators such as EEG coherence, Partial Directed Coherence, Directed Transfer Function and Transfer Entropy have been used to estimate the concurrency and causal dependence (direction and strength) between different brain regions. From brain connectivity results it has been observed that the left frontal and left temporal electrodes were activated for speech and speech imagery processes. These brain connectivity estimators have been used for training Recurrent Neural Networks (RNN) and Deep Belief Networks (DBN) for identifying the vowel from the subject’s thought. Though the accuracy level was found to be varying for each vowel while speaking and imagining of speaking the CVC word, the overall classification accuracy was found to be 72% while using RNN whereas a classification accuracy of 80% was observed while using DBN. DBN was found to outperform RNN in both the speech and speech imagery processes. Thus, the combination of brain connectivity estimators and deep learning techniques appear to be effective in identifying the vowel from EEG signals of subjects’ thought.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2020

Cognitive Neurodynamics 1/2020 Go to the issue