Skip to main content
Top
Published in:

01-12-2016 | Original Article

Identifying community structures in dynamic networks

Authors: Hamidreza Alvari, Alireza Hajibagheri, Gita Sukthankar, Kiran Lakkaraju

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game-theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game-Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adjeroh D, Kandaswamy U (2007) Game-theoretic analysis of network community structure. Int J Comput Intell Res 3(4):313–325 Adjeroh D, Kandaswamy U (2007) Game-theoretic analysis of network community structure. Int J Comput Intell Res 3(4):313–325
go back to reference Alvari H, Hashemi S, Hamzeh A (2011) Detecting overlapping communities in social networks by game theory and structural equivalence concept. In: Artificial intelligence and computational intelligence, Springer, Berlin, pp 620–630 Alvari H, Hashemi S, Hamzeh A (2011) Detecting overlapping communities in social networks by game theory and structural equivalence concept. In: Artificial intelligence and computational intelligence, Springer, Berlin, pp 620–630
go back to reference Alvari H, Hashemi S, Hamzeh A (2013) Discovering overlapping communities in social networks: a novel game-theoretic approach. AI Commun 36(2):161–177MathSciNetMATH Alvari H, Hashemi S, Hamzeh A (2013) Discovering overlapping communities in social networks: a novel game-theoretic approach. AI Commun 36(2):161–177MathSciNetMATH
go back to reference Alvari H, Hajibagheri A, Sukthankar G (2014a) Community detection in dynamic social networks: a game-theoretic approach. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 101–107 Alvari H, Hajibagheri A, Sukthankar G (2014a) Community detection in dynamic social networks: a game-theoretic approach. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 101–107
go back to reference Alvari H, Lakkaraju K, Sukthankar G, Whetzel J (2014) Predicting guild membership in massively multiplayer online games. In: Kennedy W, Agarwal N, Yang S (eds) Social computing, behavioral-cultural modeling and prediction, vol 8393., Lecture notes in computer science Springer, New York, pp 215–222CrossRef Alvari H, Lakkaraju K, Sukthankar G, Whetzel J (2014) Predicting guild membership in massively multiplayer online games. In: Kennedy W, Agarwal N, Yang S (eds) Social computing, behavioral-cultural modeling and prediction, vol 8393., Lecture notes in computer science Springer, New York, pp 215–222CrossRef
go back to reference Beigi G, Jalili M, Alvari H, Sukthankar G (2014) Leveraging community detection for accurate trust prediction. In: ASE international conference on social computing Beigi G, Jalili M, Alvari H, Sukthankar G (2014) Leveraging community detection for accurate trust prediction. In: ASE international conference on social computing
go back to reference Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRef Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRef
go back to reference Cazabet R, Amblard F, Hanachi C (2010) Detection of overlapping communities in dynamical social networks. In: IEEE international conference on social computing, pp 309–314 Cazabet R, Amblard F, Hanachi C (2010) Detection of overlapping communities in dynamical social networks. In: IEEE international conference on social computing, pp 309–314
go back to reference Chen W, Liu Z, Sun X, Wang Y (2010) A game-theoretic framework to identify overlapping communities in social networks. Data Min Knowl Discov 21(2):224–240MathSciNetCrossRef Chen W, Liu Z, Sun X, Wang Y (2010) A game-theoretic framework to identify overlapping communities in social networks. Data Min Knowl Discov 21(2):224–240MathSciNetCrossRef
go back to reference Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005(09):P09008CrossRef Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005(09):P09008CrossRef
go back to reference Folino F, Pizzuti C (2014) An evolutionary multiobjective approach for community discovery in dynamic networks. Knowl Data Eng IEEE Trans 26(8):1838–1852CrossRef Folino F, Pizzuti C (2014) An evolutionary multiobjective approach for community discovery in dynamic networks. Knowl Data Eng IEEE Trans 26(8):1838–1852CrossRef
go back to reference Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36–41CrossRef Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36–41CrossRef
go back to reference Hajibagheri A, Alvari H, Hamzeh A, Hashemi S (2012) Community detection in social networks using information diffusion. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 702–703 Hajibagheri A, Alvari H, Hamzeh A, Hashemi S (2012) Community detection in social networks using information diffusion. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 702–703
go back to reference Hajibagheri A, Hamzeh A, Sukthankar G (2013) Modeling information diffusion and community membership using stochastic optimization. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 175–182 Hajibagheri A, Hamzeh A, Sukthankar G (2013) Modeling information diffusion and community membership using stochastic optimization. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 175–182
go back to reference Hajibagheri A, Lakkaraju K, Sukthankar G, Wigand RT, Agarwal N (2015) Conflict and communication in massively-multiplayer online games. In: Social computing, behavioral-cultural modeling, and prediction, Springer, Berlin, pp 65–74 Hajibagheri A, Lakkaraju K, Sukthankar G, Wigand RT, Agarwal N (2015) Conflict and communication in massively-multiplayer online games. In: Social computing, behavioral-cultural modeling, and prediction, Springer, Berlin, pp 65–74
go back to reference Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci 101:5249–5253CrossRef Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci 101:5249–5253CrossRef
go back to reference Hui P, Yoneki E, Chan SY, Crowcroft J (2007) Distributed community detection in delay tolerant networks. In: Proceedings of ACM/IEEE international workshop on mobility in the evolving internet architecture, p 7 Hui P, Yoneki E, Chan SY, Crowcroft J (2007) Distributed community detection in delay tolerant networks. In: Proceedings of ACM/IEEE international workshop on mobility in the evolving internet architecture, p 7
go back to reference Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S et al (2011) Finding statistically significant communities in networks. PloS One 6(4):e18961CrossRef Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S et al (2011) Finding statistically significant communities in networks. PloS One 6(4):e18961CrossRef
go back to reference Leicht EA, Newman ME (2008) Community structure in directed networks. Phys Rev Lett 100(11):118703CrossRef Leicht EA, Newman ME (2008) Community structure in directed networks. Phys Rev Lett 100(11):118703CrossRef
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery in data mining, ACM, pp 177–187 Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery in data mining, ACM, pp 177–187
go back to reference Lin Y-R, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceeding of the international conference on the world wide web, ACM, pp 685–694 Lin Y-R, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceeding of the international conference on the world wide web, ACM, pp 685–694
go back to reference MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, CambridgeMATH MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, CambridgeMATH
go back to reference Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582CrossRef Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582CrossRef
go back to reference Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133CrossRef
go back to reference Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and its applications. PLoS One 9(4):e91431, 04 Nguyen NP, Dinh TN, Shen Y, Thai MT (2014) Dynamic social community detection and its applications. PLoS One 9(4):e91431, 04
go back to reference Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, Cambridge Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, Cambridge
go back to reference Palla G, Pollner P, Barabási A-L, Vicsek T (2009) Social group dynamics in networks. In: Adaptive networks, Springer, Berlin, pp 11–38 Palla G, Pollner P, Barabási A-L, Vicsek T (2009) Social group dynamics in networks. In: Adaptive networks, Springer, Berlin, pp 11–38
go back to reference Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3) Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3)
go back to reference Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123CrossRef
go back to reference Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 737–746 Satuluri V, Parthasarathy S (2009) Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 737–746
go back to reference Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 687–696 Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 687–696
go back to reference Takaffoli M, Rabbany R, Zaïane OR (2014) Community evolution prediction in dynamic social networks. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 9–16 Takaffoli M, Rabbany R, Zaïane OR (2014) Community evolution prediction in dynamic social networks. In: IEEE/ACM international conference on advances in social networks analysis and mining, pp 9–16
go back to reference Van Dongen S (2000) A cluster algorithm for graphs. Technical report 10, Centrum voor Wiskunde en Informatica Van Dongen S (2000) A cluster algorithm for graphs. Technical report 10, Centrum voor Wiskunde en Informatica
go back to reference Xie J, Szymanski B (2012) Towards linear time overlapping community detection in social networks. In: Pacific-Asia conference on knowledge discovery and data mining, LNAI, Springer, Berlin Xie J, Szymanski B (2012) Towards linear time overlapping community detection in social networks. In: Pacific-Asia conference on knowledge discovery and data mining, LNAI, Springer, Berlin
go back to reference Xie J, Szymanski BK (2011) Community detection using a neighborhood strength driven label propagation algorithm. In: Network science workshop (NSW), IEEE, pp 188–195 Xie J, Szymanski BK (2011) Community detection using a neighborhood strength driven label propagation algorithm. In: Network science workshop (NSW), IEEE, pp 188–195
go back to reference Xie J, Chen M, Szymanski BK (2013) LabelrankT: incremental community detection in dynamic networks via label propagation. arXiv preprint arXiv:1305.2006 Xie J, Chen M, Szymanski BK (2013) LabelrankT: incremental community detection in dynamic networks via label propagation. arXiv preprint arXiv:​1305.​2006
go back to reference Zhang Y, Wang J, Wang Y, Zhou L (2009) Parallel community detection on large networks with propinquity dynamics. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, New York, NY, pp 997–1006 Zhang Y, Wang J, Wang Y, Zhou L (2009) Parallel community detection on large networks with propinquity dynamics. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, New York, NY, pp 997–1006
Metadata
Title
Identifying community structures in dynamic networks
Authors
Hamidreza Alvari
Alireza Hajibagheri
Gita Sukthankar
Kiran Lakkaraju
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0390-5

Premium Partner