Skip to main content
Top
Published in: Neural Computing and Applications 10/2021

17-09-2020 | Original Article

Identifying crop water stress using deep learning models

Authors: Narendra Singh Chandel, Subir Kumar Chakraborty, Yogesh Anand Rajwade, Kumkum Dubey, Mukesh K. Tiwari, Dilip Jat

Published in: Neural Computing and Applications | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The identification of water stress is a major challenge for timely and effective irrigation to ensure global food security and sustainable agriculture. Several direct and indirect methods exist for identification of crop water stress, but they are time consuming, tedious and require highly sophisticated sensors or equipment. Image processing is one of the techniques which can help in the assessment of water stress directly. Machine learning techniques combined with image processing can aid in identifying water stress beyond the limitations of traditional image processing. Deep learning (DL) techniques have gained momentum recently for image classification and the convolutional neural network based on DL is being applied widely. In present study, comparative assessment of three DL models: AlexNet, GoogLeNet and Inception V3 are applied for identification of water stress in maize (Zea mays), okra (Abelmoschus esculentus) and soybean (Glycine max) crops. A total of 1200 digital images were acquired for each crop to form the input dataset for the deep learning models. Among the three models, performance of GoogLeNet was found to be superior with an accuracy of 98.3, 97.5 and 94.1% for maize, okra and soybean, respectively. The onset of convergence in GoogLeNet models commenced after 8 epochs with 22 (maize), 31 (okra) and 15 (soybean) iterations per epoch with error rate of less than 7.5%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference An J, Li W, Li M, Cui S, Yue H (2019) Identification and classification of maize drought stress using deep convolutional neural network. Symmetry 11(2):256–269CrossRef An J, Li W, Li M, Cui S, Yue H (2019) Identification and classification of maize drought stress using deep convolutional neural network. Symmetry 11(2):256–269CrossRef
3.
go back to reference Annapurani K, Ravilla D (2019) CNN based image classification model. IJITEE 11:1106–1114 Annapurani K, Ravilla D (2019) CNN based image classification model. IJITEE 11:1106–1114
4.
go back to reference Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36(1):61–70CrossRef Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36(1):61–70CrossRef
5.
go back to reference Baweja HS, Parhar T, Mirbod O, Nuske S (2018) Stalknet: a deep learning pipeline for high-throughput measurement of plant stalk count and stalk width. In: Field and service robotics. pp 271–284. Springer, Cham Baweja HS, Parhar T, Mirbod O, Nuske S (2018) Stalknet: a deep learning pipeline for high-throughput measurement of plant stalk count and stalk width. In: Field and service robotics. pp 271–284. Springer, Cham
6.
go back to reference Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159CrossRef Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159CrossRef
7.
go back to reference Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford Press, New York
8.
go back to reference Castaldi F, Castrignanò A, Casa R (2016) A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data. Int J Remote Sens 37(18):4317–4336CrossRef Castaldi F, Castrignanò A, Casa R (2016) A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data. Int J Remote Sens 37(18):4317–4336CrossRef
9.
go back to reference Chakraborty SK, Dubey K (2017) Embedded system for automatic real time weight based grading of fruits. In: 2017 International conference on recent innovations in signal processing and embedded systems (RISE) 2017; pp 512–515. IEEE Chakraborty SK, Dubey K (2017) Embedded system for automatic real time weight based grading of fruits. In: 2017 International conference on recent innovations in signal processing and embedded systems (RISE) 2017; pp 512–515. IEEE
10.
go back to reference Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1251–1258 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1251–1258
11.
go back to reference Ćulibrk D, Lugonja P, Minić V, Crnojević V (2011) Neural network approach to water-stressed crops detection using multispectral worldview-2 satellite imagery. In: Artificial intelligence applications and innovations, pp 323–331. Springer, Berlin, Heidelberg Ćulibrk D, Lugonja P, Minić V, Crnojević V (2011) Neural network approach to water-stressed crops detection using multispectral worldview-2 satellite imagery. In: Artificial intelligence applications and innovations, pp 323–331. Springer, Berlin, Heidelberg
12.
go back to reference Dalponte M, Bruzzone L, Gianelle D (2012) Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens Environ 123:258–270CrossRef Dalponte M, Bruzzone L, Gianelle D (2012) Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens Environ 123:258–270CrossRef
13.
go back to reference Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp 248–255. IEEE Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp 248–255. IEEE
14.
go back to reference Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147CrossRef Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147CrossRef
15.
go back to reference Farkas I (2011) Plant drought stress: detection by image analysis. In: Encycl. Earth Sci. Ser., pp 608–609. Springer Netherlands Farkas I (2011) Plant drought stress: detection by image analysis. In: Encycl. Earth Sci. Ser., pp 608–609. Springer Netherlands
16.
go back to reference Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRef Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRef
17.
go back to reference Griffiths TL, Ghahramani Z (2011) The Indian buffet process: an introduction and review. J Mach Learn Res 12:1185–1224MathSciNetMATH Griffiths TL, Ghahramani Z (2011) The Indian buffet process: an introduction and review. J Mach Learn Res 12:1185–1224MathSciNetMATH
18.
go back to reference Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agr 127:418–424CrossRef Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agr 127:418–424CrossRef
19.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
20.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704.04861
21.
go back to reference Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141
22.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
23.
go back to reference Hughes D, Salathé M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv: 1511.08060 Hughes D, Salathé M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv: 1511.08060
24.
go back to reference Kamilaris A, Prenafeta-Boldú FX (2018) A review of the use of convolutional neural networks in agriculture. J Agric Sci 156(3):312–322CrossRef Kamilaris A, Prenafeta-Boldú FX (2018) A review of the use of convolutional neural networks in agriculture. J Agric Sci 156(3):312–322CrossRef
25.
go back to reference Kaneda Y, Mineno H (2016) Sliding window-based support vector regression for predicting micrometeorological data. Expert Syst Appl 59:217–225CrossRef Kaneda Y, Mineno H (2016) Sliding window-based support vector regression for predicting micrometeorological data. Expert Syst Appl 59:217–225CrossRef
26.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Adv neural inf process syst, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Adv neural inf process syst, pp 1097–1105
27.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
28.
go back to reference Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674CrossRef Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674CrossRef
30.
go back to reference Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127CrossRef Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127CrossRef
32.
go back to reference Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320(5873):171–173CrossRef Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320(5873):171–173CrossRef
33.
go back to reference Porkka M, Gerten D, Schaphoff S, Siebert S, Kummu M (2016) Causes and trends of water scarcity in food production. Environ Res Lett 11(1):15001CrossRef Porkka M, Gerten D, Schaphoff S, Siebert S, Kummu M (2016) Causes and trends of water scarcity in food production. Environ Res Lett 11(1):15001CrossRef
34.
go back to reference Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6(10):gix083CrossRef Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6(10):gix083CrossRef
36.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556
37.
go back to reference Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23(10):883–898CrossRef Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23(10):883–898CrossRef
38.
go back to reference Slayter RO (1967) Plant-water relationships. Academic Press, New York, p 366 Slayter RO (1967) Plant-water relationships. Academic Press, New York, p 366
39.
go back to reference Šulc M, Matas J (2017) Fine-grained recognition of plants from images. Plant Methods 13(1):115CrossRef Šulc M, Matas J (2017) Fine-grained recognition of plants from images. Plant Methods 13(1):115CrossRef
40.
go back to reference Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147 Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International conference on machine learning, pp 1139–1147
41.
go back to reference Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence
42.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9
43.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp: 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition 2016, pp: 2818–2826
44.
go back to reference Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland
45.
go back to reference Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv: 1905.11946 Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv: 1905.11946
46.
go back to reference Thenmozhi K, Reddy US (2019) Crop pest classification based on deep convolutional neural network and transfer learning. Comput Electron Agr 164:104906CrossRef Thenmozhi K, Reddy US (2019) Crop pest classification based on deep convolutional neural network and transfer learning. Comput Electron Agr 164:104906CrossRef
47.
go back to reference Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412CrossRef Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412CrossRef
51.
go back to reference Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500 Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500
53.
go back to reference Xu R, Li C, Paterson AH, Jiang Y, Sun S, Robertson JS (2018) Aerial images and convolutional neural network for cotton bloom detection. Front Plant Sci 8:2235CrossRef Xu R, Li C, Paterson AH, Jiang Y, Sun S, Robertson JS (2018) Aerial images and convolutional neural network for cotton bloom detection. Front Plant Sci 8:2235CrossRef
54.
go back to reference Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833. Springer, Cham Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833. Springer, Cham
55.
go back to reference Zheng YY, Kong JL, Jin XB, Wang XY, Su TL, Zuo M (2019) CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5):1058CrossRef Zheng YY, Kong JL, Jin XB, Wang XY, Su TL, Zuo M (2019) CropDeep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5):1058CrossRef
56.
go back to reference Zhong L, Hu L, Zhou H (2019) Deep learning based multi-temporal crop classification. Remote Sens Environ 221:430–443CrossRef Zhong L, Hu L, Zhou H (2019) Deep learning based multi-temporal crop classification. Remote Sens Environ 221:430–443CrossRef
57.
go back to reference Zhuang S, Wang P, Jiang B, Li M, Gong Z (2017) Early detection of water stress in maize based on digital images. Comput Electron Agr 140:461–468CrossRef Zhuang S, Wang P, Jiang B, Li M, Gong Z (2017) Early detection of water stress in maize based on digital images. Comput Electron Agr 140:461–468CrossRef
Metadata
Title
Identifying crop water stress using deep learning models
Authors
Narendra Singh Chandel
Subir Kumar Chakraborty
Yogesh Anand Rajwade
Kumkum Dubey
Mukesh K. Tiwari
Dilip Jat
Publication date
17-09-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05325-4

Other articles of this Issue 10/2021

Neural Computing and Applications 10/2021 Go to the issue

S.I. : Higher Level Artificial Neural Network Based Intelligent Systems

Air quality prediction using CT-LSTM

Premium Partner