Skip to main content
Top

2020 | OriginalPaper | Chapter

Identifying Influential Users on Social Network: An Insight

Authors : Ragini Krishna, C. M. Prashanth

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advancement in the speed of the internet connection on handheld devices has led to an increase in the usage of social media. This drew the attention of advertisers to use social media as a platform to promote their products thus leading to an increase in the sales of their product, increasing the brand awareness. To increase the rate of information dissemination within a short period of time, influential users on social media were targeted, who would act as the word-of-mouth advertisers of the product. However, there are various parameters on which the influence of a user has to be determined. The parameters can be (1) the connectivity of the user in the network (2) knowledge/interest of the user on a particular topic/product/content (3) activity of the user on the social media. This survey focuses on the various methods and models for identifying influential nodes and also the effect of compliance, where a user falsely agrees to the content of another influential user by retweeting, just to gain status or reputation and thus increasing his influential score. Thus, the list of influential nodes of a social network can be faked upon, due to this issue.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Bonacich, P.B.: Power and centrality: a family of measures. Am. J. Soc. 92, 1170–1182 (1987)CrossRef Bonacich, P.B.: Power and centrality: a family of measures. Am. J. Soc. 92, 1170–1182 (1987)CrossRef
5.
6.
go back to reference Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978–1979)CrossRef Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978–1979)CrossRef
7.
go back to reference Lerman, K., Ghosh, R., Kang, J.H.: Centrality Metric for Dynamic Networks. University of Washington, Washington, DC (2010)CrossRef Lerman, K., Ghosh, R., Kang, J.H.: Centrality Metric for Dynamic Networks. University of Washington, Washington, DC (2010)CrossRef
8.
go back to reference Lemahieu, R., et al.: Optimizing the popularity of Twitter messages through user categories. In: IEEE International Conference on Data Mining Workshop (ICDMW). IEEE (2015) Lemahieu, R., et al.: Optimizing the popularity of Twitter messages through user categories. In: IEEE International Conference on Data Mining Workshop (ICDMW). IEEE (2015)
9.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)MathSciNetMATH Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)MathSciNetMATH
10.
go back to reference Rad, A.A., Benyoucef, M.: Towards detecting influential users in social networks. In: MCETECH (2011) Rad, A.A., Benyoucef, M.: Towards detecting influential users in social networks. In: MCETECH (2011)
11.
go back to reference Hao, F., et al.: Discovering influential users in micro-blog marketing with influence maximization mechanism. In: 2012 IEEE on Global Communications Conference (GLOBECOM). IEEE (2012) Hao, F., et al.: Discovering influential users in micro-blog marketing with influence maximization mechanism. In: 2012 IEEE on Global Communications Conference (GLOBECOM). IEEE (2012)
12.
go back to reference Jianqiang, Z., Xiaolin, G., Feng, T.: A new method of identifying influential users in the micro-blog networks. IEEE Access 5, 3008–3015 (2017)CrossRef Jianqiang, Z., Xiaolin, G., Feng, T.: A new method of identifying influential users in the micro-blog networks. IEEE Access 5, 3008–3015 (2017)CrossRef
13.
go back to reference Wei, D., et al.: Identifying influential nodes in weighted networks based on evidence theory. Phys. A Stat. Mech. Appl. 392(10), 2564–2575 (2013)CrossRef Wei, D., et al.: Identifying influential nodes in weighted networks based on evidence theory. Phys. A Stat. Mech. Appl. 392(10), 2564–2575 (2013)CrossRef
14.
go back to reference Gao, C., et al.: A modified evidential methodology of identifying influential nodes in weighted networks. Phys. A Stat. Mech. Appl. 392(21), 5490–5500 (2013)MathSciNetCrossRef Gao, C., et al.: A modified evidential methodology of identifying influential nodes in weighted networks. Phys. A Stat. Mech. Appl. 392(21), 5490–5500 (2013)MathSciNetCrossRef
15.
go back to reference Ren, J., et al.: Identifying influential nodes in weighted network based on evidence theory and local structure. Int. J. Innov. Comput. Inf. Control 11(5), 1765–1777 (2015) Ren, J., et al.: Identifying influential nodes in weighted network based on evidence theory and local structure. Int. J. Innov. Comput. Inf. Control 11(5), 1765–1777 (2015)
16.
go back to reference Jendoubi, S., et al.: Two evidential data based models for influence maximization in Twitter. Knowl. Based Syst. 121, 58–70 (2017)CrossRef Jendoubi, S., et al.: Two evidential data based models for influence maximization in Twitter. Knowl. Based Syst. 121, 58–70 (2017)CrossRef
17.
go back to reference Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets. Springer, Dordrecht, pp. 445–470 (1982)CrossRef Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets. Springer, Dordrecht, pp. 445–470 (1982)CrossRef
18.
go back to reference Sun, Z., et al.: Identifying influential nodes in complex networks based on weighted formal concept analysis. IEEE Access 5, 3777–3789 (2017)CrossRef Sun, Z., et al.: Identifying influential nodes in complex networks based on weighted formal concept analysis. IEEE Access 5, 3777–3789 (2017)CrossRef
19.
go back to reference Chen, D., et al.: Identifying influential nodes in complex networks. Phys. Stat. Mech. Appl. 391(4), 1777–1787 (2012)CrossRef Chen, D., et al.: Identifying influential nodes in complex networks. Phys. Stat. Mech. Appl. 391(4), 1777–1787 (2012)CrossRef
20.
go back to reference Erlandsson, F., et al.: Finding influential users in social media using association rule learning. Entropy 18(5), 164 (2016)CrossRef Erlandsson, F., et al.: Finding influential users in social media using association rule learning. Entropy 18(5), 164 (2016)CrossRef
21.
go back to reference Li, Y.M., Shiu, Y.L.: A diffusion mechanism for social advertising over microblogs. Decis. Support Syst. 54(1), 9–22 (2012)CrossRef Li, Y.M., Shiu, Y.L.: A diffusion mechanism for social advertising over microblogs. Decis. Support Syst. 54(1), 9–22 (2012)CrossRef
Metadata
Title
Identifying Influential Users on Social Network: An Insight
Authors
Ragini Krishna
C. M. Prashanth
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9949-8_34