Skip to main content
Top
Published in: International Journal of Data Science and Analytics 3/2020

23-05-2020 | Applications

Identifying Pareto-based solutions for regression subset selection via a feasible solution algorithm

Authors: Joshua W Lambert, Gregory S Hawk

Published in: International Journal of Data Science and Analytics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The concept of Pareto optimality has been utilized in fields such as engineering and economics to understand fluid dynamics and consumer behavior. In machine learning contexts, Pareto-optimality has been used to identify tuning parameters that best optimize a set of m criteria (multi-objective optimization). During the process of regression model selection, data scientists are often concerned with choosing a model which has the best single criterion (e.g., Akaike information criterion (AIC) or R-squared (\(R^2\))) before continuing to check a number of other regression model characteristics (e.g., model size, form, diagnostics, and interpretability). This strategy is multi-objective in nature but single objective in its numeric execution. This paper will first introduce a feasible solution algorithm (FSA) and explain how it can be applied to multi-objective problems for regression subset selection. Then we introduce the general framework of Pareto optimality within the regression setting. We then apply the algorithm in a simulation setting where we seek to estimate the first four Pareto boundaries for regression models using two model fit criteria. Finally, we present an application where we use a US communities and crime dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Elliott, C., Lambert, J., Stromberg, A., Wang, P., Zeng, T., Thompson, K.: (Accepted, subject to minor revisions) Feasibility as a mechanism for model identification and validation, journal of applied statistics. J. Appl. Stat Elliott, C., Lambert, J., Stromberg, A., Wang, P., Zeng, T., Thompson, K.: (Accepted, subject to minor revisions) Feasibility as a mechanism for model identification and validation, journal of applied statistics. J. Appl. Stat
Metadata
Title
Identifying Pareto-based solutions for regression subset selection via a feasible solution algorithm
Authors
Joshua W Lambert
Gregory S Hawk
Publication date
23-05-2020
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics / Issue 3/2020
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-020-00218-0

Other articles of this Issue 3/2020

International Journal of Data Science and Analytics 3/2020 Go to the issue

Premium Partner