Skip to main content
Top

2018 | OriginalPaper | Chapter

2. Ignition Mechanisms

Author : Sayan Biswas

Published in: Physics of Turbulent Jet Ignition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As described in the literature review section in the previous chapter, there exists a knowledge gap how ignition initiates by a hot turbulent jet. What are the ignition mechanisms from a fundamental point of view? What are the nondimensional parameters governing the ignition mechanism? To explore the fundamental ignition mechanisms by a hot turbulent jet, an experimental setup was built that uses a dual-chamber design (a small pre-chamber resided within the big main chamber). Two fuels, methane and hydrogen, were studied. Simultaneous high-speed schlieren and OH* chemiluminescence imaging were applied to visualize the jet penetration and ignition processes. It was found there exist two ignition mechanisms – flame ignition and jet ignition. A parametric study was conducted to understand the effects of several parameters on the ignition mechanism and probability, including orifice diameter, initial temperature and pressure, fuel/air equivalence ratios in both chambers, and pre-chamber spark position. The mean and fluctuation velocities of the transient hot jet were calculated according to the measured pressure histories in the two chambers. A limiting global Damköhler number was found for each fuel, under which the ignition probability is nearly zero. Lastly, the ignition outcome of all tests (no ignition, flame ignition, and jet ignition) was marked on the classical turbulent combustion regime diagram. These results provide important guidelines for design and optimization of efficient and reliable pre-chambers for natural gas engines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Smith, G.P., et al.: Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combust. Flame. 131(1), 59–69 (2002)CrossRef Smith, G.P., et al.: Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combust. Flame. 131(1), 59–69 (2002)CrossRef
2.
go back to reference Luque, J., et al.: CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame. Combust. Flame. 122(1), 172–175 (2000)CrossRef Luque, J., et al.: CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame. Combust. Flame. 122(1), 172–175 (2000)CrossRef
3.
go back to reference Orain, M., Hardalupas, Y.: Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners. Appl. Phys. B. 105(2), 435–449 (2011)CrossRef Orain, M., Hardalupas, Y.: Measurements of local mixture fraction of reacting mixture in swirl-stabilised natural gas-fuelled burners. Appl. Phys. B. 105(2), 435–449 (2011)CrossRef
4.
go back to reference Elhsnawi, M., Teodorczyk, A.: Studies of mixing and ignition in hydrogen-oxygen mixture with hot inert gas injection. In: Proceedings of the European Combustion Meeting. Warsaw University of Technology ITC, Nowowiejska, Warszawa (2005) Elhsnawi, M., Teodorczyk, A.: Studies of mixing and ignition in hydrogen-oxygen mixture with hot inert gas injection. In: Proceedings of the European Combustion Meeting. Warsaw University of Technology ITC, Nowowiejska, Warszawa (2005)
5.
go back to reference Sadanandan, R., et al.: 2D mixture fraction studies in a hot-jet ignition configuration using NO-LIF and correlation analysis. Flow Turb. Combust. 86(1), 45–62 (2010)CrossRef Sadanandan, R., et al.: 2D mixture fraction studies in a hot-jet ignition configuration using NO-LIF and correlation analysis. Flow Turb. Combust. 86(1), 45–62 (2010)CrossRef
6.
go back to reference Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef Sadanandan, R., et al.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef
7.
go back to reference Iida, N., Kawaguchi, O., Sato, G.T.: Premixed flame propagating into a narrow channel at a high speed, part 2: transient behavior of the properties of the flowing gas inside the channel. Combust. Flame. 60(3), 257–267 (1985)CrossRef Iida, N., Kawaguchi, O., Sato, G.T.: Premixed flame propagating into a narrow channel at a high speed, part 2: transient behavior of the properties of the flowing gas inside the channel. Combust. Flame. 60(3), 257–267 (1985)CrossRef
8.
go back to reference Law, C.K.: Combustion Physics, vol. xviii, p. 722. Cambridge University Press, Cambridge, MA/New York (2006)CrossRef Law, C.K.: Combustion Physics, vol. xviii, p. 722. Cambridge University Press, Cambridge, MA/New York (2006)CrossRef
9.
go back to reference Crane Co: Engineering Division. In: Flow of Fluids through Valves, Fittings, and Pipe. Crane Company Technical paper. Crane Co, Chicago (1957) Crane Co: Engineering Division. In: Flow of Fluids through Valves, Fittings, and Pipe. Crane Company Technical paper. Crane Co, Chicago (1957)
10.
go back to reference Peters, N.: Turbulent combustion. In: Cambridge Monographs on Mechanics, vol. xvi, p. 304. Cambridge University Press, Cambridge, MA/New York (2000) Peters, N.: Turbulent combustion. In: Cambridge Monographs on Mechanics, vol. xvi, p. 304. Cambridge University Press, Cambridge, MA/New York (2000)
12.
go back to reference Debonis, J.R., Scott, J.N.: Large-Eddy simulation of a turbulent compressible round jet. AIAA J. 40(7), 1346–1354 (2002)CrossRef Debonis, J.R., Scott, J.N.: Large-Eddy simulation of a turbulent compressible round jet. AIAA J. 40(7), 1346–1354 (2002)CrossRef
13.
go back to reference Uzun, A., Hussaini, M.Y.: Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation. Theor. Comput. Fluid Dyn. 21(4), 291–321 (2007)CrossRef Uzun, A., Hussaini, M.Y.: Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation. Theor. Comput. Fluid Dyn. 21(4), 291–321 (2007)CrossRef
14.
go back to reference Iglesias, I., et al.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Modell. 16(6), 994–1010 (2012)CrossRef Iglesias, I., et al.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Modell. 16(6), 994–1010 (2012)CrossRef
15.
go back to reference Carpio, J., et al.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy. 38(7), 3105–3109 (2013)CrossRef Carpio, J., et al.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydrog. Energy. 38(7), 3105–3109 (2013)CrossRef
16.
go back to reference Borghi, R.P.: On the structure and morphology of turbulent premixed flames. In: Casci, C. (ed.) Recent Advances in the Aerospace Sciences, pp. 117–138. Springer, Boston (1985)CrossRef Borghi, R.P.: On the structure and morphology of turbulent premixed flames. In: Casci, C. (ed.) Recent Advances in the Aerospace Sciences, pp. 117–138. Springer, Boston (1985)CrossRef
17.
go back to reference Peters, N.: Laminar flamelet concepts in turbulent combustion. Int. Symp. Combust. 21(1), 1231–1250 (1988)CrossRef Peters, N.: Laminar flamelet concepts in turbulent combustion. Int. Symp. Combust. 21(1), 1231–1250 (1988)CrossRef
18.
go back to reference Abdel-Gayed, R.G., Bradley, D., Lung, F.K.K.: Combustion regimes and the straining of turbulent premixed flames. Combust. Flame. 76(2), 213–218 (1989)CrossRef Abdel-Gayed, R.G., Bradley, D., Lung, F.K.K.: Combustion regimes and the straining of turbulent premixed flames. Combust. Flame. 76(2), 213–218 (1989)CrossRef
19.
go back to reference Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct simulation. Int. Symp. Combust. 23(1), 613–619 (1991)CrossRef Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct simulation. Int. Symp. Combust. 23(1), 613–619 (1991)CrossRef
20.
go back to reference Williams, F.A.: Combustion theory: the fundamental theory of chemically reacting flow systems. In: Combustion Science and Engineering Series, vol. xxiii, 2nd edn, p. 680. Benjamin/Cummings Pub. Co, Menlo Park (1985) Williams, F.A.: Combustion theory: the fundamental theory of chemically reacting flow systems. In: Combustion Science and Engineering Series, vol. xxiii, 2nd edn, p. 680. Benjamin/Cummings Pub. Co, Menlo Park (1985)
21.
go back to reference Chen, Y.C., et al.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame. 107(3), 223–244 (1996)CrossRef Chen, Y.C., et al.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame. 107(3), 223–244 (1996)CrossRef
22.
go back to reference Chen, Y.C., Mansour, M.S.: Measurements of the detailed flame structure in turbulent H2-Ar jet diffusion flames with line-Raman/Rayleigh/LIPF-OH technique. Int. Symp. Combust. 26(1), 97–103 (1996)CrossRef Chen, Y.C., Mansour, M.S.: Measurements of the detailed flame structure in turbulent H2-Ar jet diffusion flames with line-Raman/Rayleigh/LIPF-OH technique. Int. Symp. Combust. 26(1), 97–103 (1996)CrossRef
Metadata
Title
Ignition Mechanisms
Author
Sayan Biswas
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-76243-2_2

Premium Partner