Skip to main content
Top

2023 | OriginalPaper | Chapter

6. II-VI Semiconductor-Based Unipolar Barrier Structures for Infrared Photodetector Arrays

Authors : A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, D. I. Gorn, S. A. Dvoretsky, N. N. Mikhailov, G. Y. Sidorov, M. V. Yakushev

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid development of thermal imaging technology requires a radical improvement in the technology of infrared photodetectors in the mid wave (MWIR, 3–5 μm) and long wave (LWIR, 8–14 μm) regions of the infrared (IR) range. Today, there is an urgent need to develop MWIR and LWIR array photodetectors of the third generation, which are subject to increased requirements for photosensitive elements, in particular, for operating temperatures, weight, dimensions, and power consumption.
One of the main ways to improve the performance of such photosensitive device structures is to increase the operating temperature of cooled photosensitive layer in the photodetectors without losing temperature sensitivity and infrared image quality. This trend is directly related to the development and implementation of new photosensitive semiconductor structures that provide low dark currents and, as a result, low intrinsic noise. This is achieved through the creation of semiconductor heterostructures by epitaxial methods. Currently, work on the creation of high operating temperature focal plane array (HOT FPA) is being actively carried out by leading manufacturers of optoelectronic equipment.
Another way to improve the performance of such photosensitive device structures is the use of so-called unipolar xBn barrier structures, where x is a contact semiconductor layer of n- or p-type conductivity, B is a barrier layer, and n is an absorbing layer of n-type of conductivity.
At present, research and development of nBn structures for FPAs are carried out both on the basis of III-V and II-VI materials. In the case of II-VI materials, a semiconducting HgCdTe solid solution is used. From a fundamental point of view, HgCdTe is an ideal material for creating IR detectors.
This chapter is review the latest advances in the development and fabrication of unipolar barrier structures based on HgCdTe.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rogalski А (2019) Infrared and terahertz detectors, 3rd edn. Taylor & Francis Group, LLCCrossRef Rogalski А (2019) Infrared and terahertz detectors, 3rd edn. Taylor & Francis Group, LLCCrossRef
2.
go back to reference Kinch MA (2015) The future of infrared; III–Vs or HgCdTe? J Electron Mater 44(9):2969–2976ADSCrossRef Kinch MA (2015) The future of infrared; III–Vs or HgCdTe? J Electron Mater 44(9):2969–2976ADSCrossRef
3.
go back to reference Gu R, Antoszewski J, Lei W, Madni I, Umana-Membrenao G, Faraone L (2017) MBE growth of HgCdTe on GaSb substrates for application in next generation infrared detectors. J Cryst Growth 468:216–219ADSCrossRef Gu R, Antoszewski J, Lei W, Madni I, Umana-Membrenao G, Faraone L (2017) MBE growth of HgCdTe on GaSb substrates for application in next generation infrared detectors. J Cryst Growth 468:216–219ADSCrossRef
4.
go back to reference Maimon S, Wicks GW (2006) nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89:151109ADSCrossRef Maimon S, Wicks GW (2006) nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett 89:151109ADSCrossRef
5.
go back to reference Kopytko M, Keblowski A, Gawron W, Madejczyk P (2015) Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors. Opto-Electron Rev 23(2):143–148ADSCrossRef Kopytko M, Keblowski A, Gawron W, Madejczyk P (2015) Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors. Opto-Electron Rev 23(2):143–148ADSCrossRef
6.
go back to reference Rogalski A, Martyniuk P (2014) Mid-wavelength infrared nBn for HOT detectors. J Electron Mater 43(8):2963–2969ADSCrossRef Rogalski A, Martyniuk P (2014) Mid-wavelength infrared nBn for HOT detectors. J Electron Mater 43(8):2963–2969ADSCrossRef
7.
go back to reference Kopytko M, Kębłowski A, Gawron W, Pusz W (2016) LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond Sci Technol 31(3):035025ADSCrossRef Kopytko M, Kębłowski A, Gawron W, Pusz W (2016) LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond Sci Technol 31(3):035025ADSCrossRef
8.
go back to reference Kopytko M, Rogalski A (2016) HgCdTe barrier infrared detectors. Prog Quantum Electron 47:1–18ADSCrossRef Kopytko M, Rogalski A (2016) HgCdTe barrier infrared detectors. Prog Quantum Electron 47:1–18ADSCrossRef
9.
go back to reference Bubulac LO (1988) Defects, diffusion and activation in ion implanted HgCdTe. J Crystal Growth 86(1–4):723–734ADSCrossRef Bubulac LO (1988) Defects, diffusion and activation in ion implanted HgCdTe. J Crystal Growth 86(1–4):723–734ADSCrossRef
10.
go back to reference Talipov N, Voitsekhovskii A (2018) Annealing kinetics of radiation defects in boron-implanted p-Hg1-xCdxTe. Semicond Sci Technol 33(6):065009ADSCrossRef Talipov N, Voitsekhovskii A (2018) Annealing kinetics of radiation defects in boron-implanted p-Hg1-xCdxTe. Semicond Sci Technol 33(6):065009ADSCrossRef
11.
go back to reference Pedrazzani JR, Maimon S, Wicks GW (2008) Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors. Electron Lett 44(25):1487–1488ADSCrossRef Pedrazzani JR, Maimon S, Wicks GW (2008) Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors. Electron Lett 44(25):1487–1488ADSCrossRef
12.
go back to reference Soibel A, Keo SA, Fisher A, Hill CJ, Luong E, Ting DZ, Gunapala SD, Lubyshev D, Qiu Y, Fastenau JM, Liu AWK (2018) High operating temperature nBn detector with monolithically integrated microlens. Appl Phys Lett 112(4):041105ADSCrossRef Soibel A, Keo SA, Fisher A, Hill CJ, Luong E, Ting DZ, Gunapala SD, Lubyshev D, Qiu Y, Fastenau JM, Liu AWK (2018) High operating temperature nBn detector with monolithically integrated microlens. Appl Phys Lett 112(4):041105ADSCrossRef
13.
go back to reference Martyniuk P, Kopytko M, Rogalski A (2014) Barrier infrared detectors. Opto-Electron Rev 22(2):127–146ADSCrossRef Martyniuk P, Kopytko M, Rogalski A (2014) Barrier infrared detectors. Opto-Electron Rev 22(2):127–146ADSCrossRef
14.
go back to reference Itsuno AM (2012) Bandgap-engineered mercury cadmium telluride infrared detector structures for reduced cooling requirements. PhD thesis, University of Michigan Itsuno AM (2012) Bandgap-engineered mercury cadmium telluride infrared detector structures for reduced cooling requirements. PhD thesis, University of Michigan
15.
go back to reference Iakovleva NI (2019) Unipolar MCT-based nBn-structure for a MWIR FPA. Appl Phys 3:53–60 Iakovleva NI (2019) Unipolar MCT-based nBn-structure for a MWIR FPA. Appl Phys 3:53–60
16.
go back to reference Martyniuk P, Rogalski A (2013) Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bull Polish Acad Sci, Techn Sci 61(1):211–220 Martyniuk P, Rogalski A (2013) Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bull Polish Acad Sci, Techn Sci 61(1):211–220
17.
go back to reference Itsuno AM, Phillips JD, Velicu S (2011) Design and modeling of HgCdTe nBn detectors. J Electron Mater 40(8):1624–1629ADSCrossRef Itsuno AM, Phillips JD, Velicu S (2011) Design and modeling of HgCdTe nBn detectors. J Electron Mater 40(8):1624–1629ADSCrossRef
18.
go back to reference Itsuno AM, Phillips JD, Gilmore AS, Velicu S (2011) Calculated performance of an Auger suppressed unipolar HgCdTe photodetector for high temperature operation. Proc SPIE 8155:81550JADSCrossRef Itsuno AM, Phillips JD, Gilmore AS, Velicu S (2011) Calculated performance of an Auger suppressed unipolar HgCdTe photodetector for high temperature operation. Proc SPIE 8155:81550JADSCrossRef
19.
go back to reference Itsuno AM, Phillips JD, Velicu S (2012) Design of an Auger-Suppressed Unipolar HgCdTe NBvN photodetector. J Electron Mater 41(10):2886–2892ADSCrossRef Itsuno AM, Phillips JD, Velicu S (2012) Design of an Auger-Suppressed Unipolar HgCdTe NBvN photodetector. J Electron Mater 41(10):2886–2892ADSCrossRef
20.
go back to reference Velicu S, Zhao J, Morley M, Itsuno AM, Phillips JD (2012) Theoretical and experimental investigation of MWIR HgCdTe nBn detectors. Proc SPIE 8268:82682XADSCrossRef Velicu S, Zhao J, Morley M, Itsuno AM, Phillips JD (2012) Theoretical and experimental investigation of MWIR HgCdTe nBn detectors. Proc SPIE 8268:82682XADSCrossRef
21.
go back to reference Itsuno AM, Phillips JD, Velicu S (2012) Unipolar barrier-integrated HgCdTe infrared detectors. In: Proceeding of 70th device research conference, 18–20 June 2012. University Park, PA, USA, 12908883 Itsuno AM, Phillips JD, Velicu S (2012) Unipolar barrier-integrated HgCdTe infrared detectors. In: Proceeding of 70th device research conference, 18–20 June 2012. University Park, PA, USA, 12908883
22.
go back to reference Itsuno AM, Phillips JD, Velicu S (2012) Mid-wave infrared HgCdTe nBn photodetector. Appl Phys Lett 100:161102ADSCrossRef Itsuno AM, Phillips JD, Velicu S (2012) Mid-wave infrared HgCdTe nBn photodetector. Appl Phys Lett 100:161102ADSCrossRef
23.
go back to reference Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2015) Theoretical study of Midwave infrared HgCdTe nBn detectors operating at elevated temperatures. J Electron Mater 44:3044–3055ADSCrossRef Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2015) Theoretical study of Midwave infrared HgCdTe nBn detectors operating at elevated temperatures. J Electron Mater 44:3044–3055ADSCrossRef
24.
go back to reference Ye ZH, Chen YY, Zhang P, Lin C, Hu XN, Ding RJ, He L (2014) Modeling of LWIR nBn HgCdTe photodetector. Proc SPIE 9070:90701LADS Ye ZH, Chen YY, Zhang P, Lin C, Hu XN, Ding RJ, He L (2014) Modeling of LWIR nBn HgCdTe photodetector. Proc SPIE 9070:90701LADS
25.
go back to reference Akhavan ND, Umana-Membreno GA, Jolley G, Antoszewski J, Faraone L (2014) A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl Phys Lett 105:121110ADSCrossRef Akhavan ND, Umana-Membreno GA, Jolley G, Antoszewski J, Faraone L (2014) A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl Phys Lett 105:121110ADSCrossRef
26.
go back to reference Akhavan ND, Jolley G, Membreno GU, Antoszewski J, Faraone L (2014) Band-to-band tunnelling (BTBT) in HgCdTe-based nBn detectors for LWIR applications. In: Proceedings of the conference on optoelectronic and microelectronic materials & devices, 14–17 December 2014. Perth, WA, Australia, 14920679 Akhavan ND, Jolley G, Membreno GU, Antoszewski J, Faraone L (2014) Band-to-band tunnelling (BTBT) in HgCdTe-based nBn detectors for LWIR applications. In: Proceedings of the conference on optoelectronic and microelectronic materials & devices, 14–17 December 2014. Perth, WA, Australia, 14920679
27.
go back to reference Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2014) Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors. IEEE Trans Electron Devices 61(11):3691–3698ADSCrossRef Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2014) Performance modeling of bandgap engineered HgCdTe-based nBn infrared detectors. IEEE Trans Electron Devices 61(11):3691–3698ADSCrossRef
28.
go back to reference Gravrand O, Boulard F, Ferron A, Ballet P, Hassis W (2015) A new nBn IR detection concept using HgCdTe material. J Electron Mater 44(9):3069–3075ADSCrossRef Gravrand O, Boulard F, Ferron A, Ballet P, Hassis W (2015) A new nBn IR detection concept using HgCdTe material. J Electron Mater 44(9):3069–3075ADSCrossRef
29.
go back to reference Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2015) Design of Band Engineered HgCdTe nBn detectors for MWIR and LWIR applications. IEEE Trans Electron Devices 62(3):722–728ADSCrossRef Akhavan ND, Jolley G, Umana-Membreno GA, Antoszewski J, Faraone L (2015) Design of Band Engineered HgCdTe nBn detectors for MWIR and LWIR applications. IEEE Trans Electron Devices 62(3):722–728ADSCrossRef
30.
go back to reference Ting DZ, Soibel A, Khoshakhlagh A, Gunapala SD (2017) Theoretical analysis of nBn infrared photodetectors. Opt Eng 56(9):091606ADSCrossRef Ting DZ, Soibel A, Khoshakhlagh A, Gunapala SD (2017) Theoretical analysis of nBn infrared photodetectors. Opt Eng 56(9):091606ADSCrossRef
31.
go back to reference Akhavan ND, Umana-Membreno GA, Gu R, Antoszewski J, Faraone L (2018) Delta doping in HgCdTe based unipolar barrier photodetectors. IEEE Trans Electron Devices 65(1):4340–4345ADSCrossRef Akhavan ND, Umana-Membreno GA, Gu R, Antoszewski J, Faraone L (2018) Delta doping in HgCdTe based unipolar barrier photodetectors. IEEE Trans Electron Devices 65(1):4340–4345ADSCrossRef
32.
go back to reference He J, Hu W (2018) Numerical simulation of HgCdTe nBn longwavelength infrared detector. In: Proceedings of international conference on numerical simulation of optoelectronic devices (NUSOD), 05–09 November 2018. Hong Kong, China, 18310399 He J, Hu W (2018) Numerical simulation of HgCdTe nBn longwavelength infrared detector. In: Proceedings of international conference on numerical simulation of optoelectronic devices (NUSOD), 05–09 November 2018. Hong Kong, China, 18310399
33.
go back to reference Uzgur F, Kocaman S (2019) A dual-band HgCdTe nBn infrared detector design. Proc SPIE 11129:1112903 Uzgur F, Kocaman S (2019) A dual-band HgCdTe nBn infrared detector design. Proc SPIE 11129:1112903
34.
go back to reference Uzgur F, Kocaman S (2019) Barrier engineering for HgCdTe unipolar detectors on alternative substrates. Infrared Phys Technol 97:123–128ADSCrossRef Uzgur F, Kocaman S (2019) Barrier engineering for HgCdTe unipolar detectors on alternative substrates. Infrared Phys Technol 97:123–128ADSCrossRef
35.
go back to reference Sharma I, Srivastava T, Kaushik R, Goyal A (2019) Design and analysis of HgCdTe infrared photodetector. In: Proceedings of the international conference on signal processing and communication (ICSC), 07–09 March 2019. Noida, India, 19256588 Sharma I, Srivastava T, Kaushik R, Goyal A (2019) Design and analysis of HgCdTe infrared photodetector. In: Proceedings of the international conference on signal processing and communication (ICSC), 07–09 March 2019. Noida, India, 19256588
36.
go back to reference He J, Wang P, Li Q, Wang F, Gu Y, Shen C, Lu Chen P, Martyniuk A, Rogalski XC, Wei L, Hu W (2010) Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design. IEEE Trans Electron Devices 67(5):2001–2007ADSCrossRef He J, Wang P, Li Q, Wang F, Gu Y, Shen C, Lu Chen P, Martyniuk A, Rogalski XC, Wei L, Hu W (2010) Enhanced performance of HgCdTe long-wavelength infrared photodetectors with nBn design. IEEE Trans Electron Devices 67(5):2001–2007ADSCrossRef
38.
go back to reference Tennant WE, Lee D, Zandian M, Piquette E, Carmody M (2008) MBE HgCdTe technology: a very general solution to IR detection, described by «Rule 07», a very convenient heuristic. J Electron Mater 37(9):1406–1410ADSCrossRef Tennant WE, Lee D, Zandian M, Piquette E, Carmody M (2008) MBE HgCdTe technology: a very general solution to IR detection, described by «Rule 07», a very convenient heuristic. J Electron Mater 37(9):1406–1410ADSCrossRef
39.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Admittance characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy. Russ Phys J 62(5):818–826CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Admittance characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy. Russ Phys J 62(5):818–826CrossRef
40.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019) Admittance dependences of the mid-wave infrared barrier structure based on HgCdTe grown by molecular beam epitaxy. Mater Res Express 6:116411ADSCrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2019) Admittance dependences of the mid-wave infrared barrier structure based on HgCdTe grown by molecular beam epitaxy. Mater Res Express 6:116411ADSCrossRef
41.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Current-voltage characteristics of nBn structures based on mercury cadmium telluride epitaxial films. Russ Phys J 62(6):1054–1061CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Current-voltage characteristics of nBn structures based on mercury cadmium telluride epitaxial films. Russ Phys J 62(6):1054–1061CrossRef
42.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Diffusion-limited dark currents in mid-wave infrared HgCdTd-based nBn structures with Al2O3 passivation. J Phys D Appl Phys 53:53 055107CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Diffusion-limited dark currents in mid-wave infrared HgCdTd-based nBn structures with Al2O3 passivation. J Phys D Appl Phys 53:53 055107CrossRef
43.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Electrical properties of nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs substrates. Infrared Phys Technol 102:103035CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY (2019) Electrical properties of nBn structures based on HgCdTe grown by molecular beam epitaxy on GaAs substrates. Infrared Phys Technol 102:103035CrossRef
44.
go back to reference Izhnin II, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2022) Admittance of barrier nanostructures based on MBE HgCdTe. Appl Nanosci 12:403–409ADSCrossRef Izhnin II, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2022) Admittance of barrier nanostructures based on MBE HgCdTe. Appl Nanosci 12:403–409ADSCrossRef
45.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Admittance of barrier structures based on mercury cadmium telluride. Russ Phys J 63(3):432–445CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Admittance of barrier structures based on mercury cadmium telluride. Russ Phys J 63(3):432–445CrossRef
46.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Admittance of metal-insulator-semiconductor devices based on HgCdTe nBn structures. Semicond Sci Technol 35:055026ADSCrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Admittance of metal-insulator-semiconductor devices based on HgCdTe nBn structures. Semicond Sci Technol 35:055026ADSCrossRef
47.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Impedance of mis devices based on nBn structures from mercury cadmium telluride. Russ Phys J 63(6):907–916CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Impedance of mis devices based on nBn structures from mercury cadmium telluride. Russ Phys J 63(6):907–916CrossRef
48.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) Admittance of MIS structures based on nBn systems of epitaxial HgCdTe for detection in the 3-5 μm spectral range. Tech Phys Lett 47(6):616–619 Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) Admittance of MIS structures based on nBn systems of epitaxial HgCdTe for detection in the 3-5 μm spectral range. Tech Phys Lett 47(6):616–619
49.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) An experimental study of the dynamic resistance in surface leakage limited nBn structures based on HgCdTe grown by molecular beam epitaxy. J Electron Mater 50:4599–4605ADSCrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) An experimental study of the dynamic resistance in surface leakage limited nBn structures based on HgCdTe grown by molecular beam epitaxy. J Electron Mater 50:4599–4605ADSCrossRef
50.
go back to reference Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave IR detectors. Russ Phys J 64(5):763–769CrossRef Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2021) Dark currents of unipolar barrier structures based on mercury cadmium telluride for long-wave IR detectors. Russ Phys J 64(5):763–769CrossRef
51.
go back to reference Burlakov ID, Kulchitsky NA, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Gorn DI (2021) Unipolar semiconductor barrier structures for infrared photodetector arrays (review). J Commun Technol Electron 66(9):1084–1091CrossRef Burlakov ID, Kulchitsky NA, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Gorn DI (2021) Unipolar semiconductor barrier structures for infrared photodetector arrays (review). J Commun Technol Electron 66(9):1084–1091CrossRef
52.
go back to reference Kopytko M (2014) Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Phys Technol 64:47–55ADSCrossRef Kopytko M (2014) Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Phys Technol 64:47–55ADSCrossRef
53.
go back to reference Kopytko M, Keblowski A, Gawron W, Madejczyk P, Kowalewski A, Jozwikowski K (2013) High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electron Rev 21(4):402–405ADSCrossRef Kopytko M, Keblowski A, Gawron W, Madejczyk P, Kowalewski A, Jozwikowski K (2013) High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electron Rev 21(4):402–405ADSCrossRef
54.
go back to reference Kopytko M, Jozwikowski K (2013) Numerical Analysis of Current–Voltage Characteristics of LWIR nBn and p-on-n HgCdTe Photodetectors. J Electron Mater 42(11):3211–3216ADSCrossRef Kopytko M, Jozwikowski K (2013) Numerical Analysis of Current–Voltage Characteristics of LWIR nBn and p-on-n HgCdTe Photodetectors. J Electron Mater 42(11):3211–3216ADSCrossRef
55.
go back to reference Kopytko M, Jozwikowski K, Rogalski A (2014) Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode. Solid State Electron 100:20–26ADSCrossRef Kopytko M, Jozwikowski K, Rogalski A (2014) Fundamental limits of MWIR HgCdTe barrier detectors operating under non-equilibrium mode. Solid State Electron 100:20–26ADSCrossRef
56.
go back to reference Martyniuk P, Gawron W (2014) Barrier detectors versus homojunction photodiode. Metrol Meas Syst XXI (4):675–684 Martyniuk P, Gawron W (2014) Barrier detectors versus homojunction photodiode. Metrol Meas Syst XXI (4):675–684
58.
go back to reference Martyniuk P (2015) HOT mid-wave HgCdTe nBn and pBp infrared detectors. Opt Quant Electron 47:1311–1318CrossRef Martyniuk P (2015) HOT mid-wave HgCdTe nBn and pBp infrared detectors. Opt Quant Electron 47:1311–1318CrossRef
59.
go back to reference Martyniuk P, Gawron W, Pusz W, Stanaszek D, Rogalski A (2014) Modeling of HOT (111) HgCdTe MWIR detector for fast response operation. Opt Quant Electron 46:1303–1312CrossRef Martyniuk P, Gawron W, Pusz W, Stanaszek D, Rogalski A (2014) Modeling of HOT (111) HgCdTe MWIR detector for fast response operation. Opt Quant Electron 46:1303–1312CrossRef
61.
go back to reference Martyniuk P, Gawron W, Stanaszek D, Pusz W, Rogalski A (2014) Theoretical modelling of mercury cadmium telluride mid-wave detector for high temperature operation. IET Optoelectron 8(6):239–244CrossRef Martyniuk P, Gawron W, Stanaszek D, Pusz W, Rogalski A (2014) Theoretical modelling of mercury cadmium telluride mid-wave detector for high temperature operation. IET Optoelectron 8(6):239–244CrossRef
62.
go back to reference Qiu WC, Jiang T, Cheng XA (2015) A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. J Appl Phys 118:124504ADSCrossRef Qiu WC, Jiang T, Cheng XA (2015) A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. J Appl Phys 118:124504ADSCrossRef
63.
go back to reference Kopytko M, Jozwikowski K (2015) Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation. IEEE Trans Electron Devices 62(7):2278–2284ADSCrossRef Kopytko M, Jozwikowski K (2015) Generation-recombination effect in MWIR HgCdTe barrier detectors for high-temperature operation. IEEE Trans Electron Devices 62(7):2278–2284ADSCrossRef
64.
go back to reference Kopytko M, Keblowski A, Gawron W, Martyniuk P, Madejczyk P, Jozwikowski K, Kowalewski A, Markowska O, Rogalski A (2015) MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation. Opt Eng 54(10):105105ADSCrossRef Kopytko M, Keblowski A, Gawron W, Martyniuk P, Madejczyk P, Jozwikowski K, Kowalewski A, Markowska O, Rogalski A (2015) MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation. Opt Eng 54(10):105105ADSCrossRef
65.
go back to reference Chen Y, Ye Z, Zhang P, Hu X, Ding R, He L (2016) A barrier structure optimization for widening processing window in dual-band HgCdTe IRFPAs detectors. Opt Quant Electron 48:294CrossRef Chen Y, Ye Z, Zhang P, Hu X, Ding R, He L (2016) A barrier structure optimization for widening processing window in dual-band HgCdTe IRFPAs detectors. Opt Quant Electron 48:294CrossRef
66.
go back to reference Martyniuk P, Gawron W, Madejczyk P, Kopytko M, Grodecki K, Gomulka E (2017) Theoretical utmost performance of (100) mid-wave HgCdTe photodetectors. Opt Quant Electron 49:20CrossRef Martyniuk P, Gawron W, Madejczyk P, Kopytko M, Grodecki K, Gomulka E (2017) Theoretical utmost performance of (100) mid-wave HgCdTe photodetectors. Opt Quant Electron 49:20CrossRef
67.
go back to reference Madejczyk P, Gawron W, Martyniuk P, Keblowski A, Pusz W, Pawluczyk J, Kopytko M, Rutkowski J, Rogalski A, Piotrowski J (2017) Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes. Infrared Phys Technol 81:276–281ADSCrossRef Madejczyk P, Gawron W, Martyniuk P, Keblowski A, Pusz W, Pawluczyk J, Kopytko M, Rutkowski J, Rogalski A, Piotrowski J (2017) Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes. Infrared Phys Technol 81:276–281ADSCrossRef
68.
go back to reference Kopytko M, Keblowski A, Madejczyk P, Martyniuk P, Piotrowski J, Gawron W, Grodecki K, Jozwikowski K, Rutkowski J (2017) Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode. J Electron Mater 46(10):6045–6055ADSCrossRef Kopytko M, Keblowski A, Madejczyk P, Martyniuk P, Piotrowski J, Gawron W, Grodecki K, Jozwikowski K, Rutkowski J (2017) Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode. J Electron Mater 46(10):6045–6055ADSCrossRef
69.
go back to reference Martyniuk P, Gawron W, Mikolajczyk J (2017) The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems. In: Proceedings of the SPIE 10437, advanced free-space optical communication techniques and applications III, 104370G (6 October 2017). https://doi.org/10.1117/12.2278628CrossRef Martyniuk P, Gawron W, Mikolajczyk J (2017) The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems. In: Proceedings of the SPIE 10437, advanced free-space optical communication techniques and applications III, 104370G (6 October 2017). https://​doi.​org/​10.​1117/​12.​2278628CrossRef
70.
go back to reference Jozwikowski K, Piotrowski J, Jozwikowska A, Kopytko M, Martyniuk P, Gawron W, Madejczyk P, Kowalewski A, Markowska O, Martyniuk A, Rogalski A (2017) The numerical-experimental enhanced analysis of HOT MCT barrier infrared detectors. J Electron Mater 46:5471–5478ADSCrossRef Jozwikowski K, Piotrowski J, Jozwikowska A, Kopytko M, Martyniuk P, Gawron W, Madejczyk P, Kowalewski A, Markowska O, Martyniuk A, Rogalski A (2017) The numerical-experimental enhanced analysis of HOT MCT barrier infrared detectors. J Electron Mater 46:5471–5478ADSCrossRef
71.
go back to reference Kopytko M (2017) Theoretical performance of mid wavelength HgCdTe(100) heterostructure infrared detector. Solid State Electron 137:102–108ADSCrossRef Kopytko M (2017) Theoretical performance of mid wavelength HgCdTe(100) heterostructure infrared detector. Solid State Electron 137:102–108ADSCrossRef
72.
go back to reference Kopytko M, Gomolka E, Michalczewski K, Martyniuk P, Rutkowski J, Rogalski A (2018) Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors. Semicond Sci Technol 33:125010ADSCrossRef Kopytko M, Gomolka E, Michalczewski K, Martyniuk P, Rutkowski J, Rogalski A (2018) Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors. Semicond Sci Technol 33:125010ADSCrossRef
73.
go back to reference Kopytko M, Gawron W, Keblowski A, Stępien D, Martyniuk P, Jozwikowska K (2018) Numerical analysis of HgCdTe dual-band infrared detector. Opt Quant Electron 51:62CrossRef Kopytko M, Gawron W, Keblowski A, Stępien D, Martyniuk P, Jozwikowska K (2018) Numerical analysis of HgCdTe dual-band infrared detector. Opt Quant Electron 51:62CrossRef
74.
go back to reference Martyniuk P, Madejczyk P, Kopytko M, Henig AM, Grodecki K, Gawron W, Rutkowski J (2018) Theoretical simulation of the thermoelectrically cooled HgCdTe LWIR detector for fast response operating under unbiased conditions. IET Optoelectron 12(4):161–167CrossRef Martyniuk P, Madejczyk P, Kopytko M, Henig AM, Grodecki K, Gawron W, Rutkowski J (2018) Theoretical simulation of the thermoelectrically cooled HgCdTe LWIR detector for fast response operating under unbiased conditions. IET Optoelectron 12(4):161–167CrossRef
75.
go back to reference Kopytko M, Gawron W, Keblowski A, Stepien D, Martyniuk P, Jozwikowski K (2019) Numerical analysis of HgCdTe dual-band infrared detector. Opt Quant Electron 51:62CrossRef Kopytko M, Gawron W, Keblowski A, Stepien D, Martyniuk P, Jozwikowski K (2019) Numerical analysis of HgCdTe dual-band infrared detector. Opt Quant Electron 51:62CrossRef
76.
go back to reference He J, Li Q, Wang P, Wang F, Yue G, Shen C, Luo M, Yu C, Lu Chen X, Chen W, Lu WH (2020) Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Opt Express 28(22):33556–33563ADSCrossRef He J, Li Q, Wang P, Wang F, Yue G, Shen C, Luo M, Yu C, Lu Chen X, Chen W, Lu WH (2020) Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Opt Express 28(22):33556–33563ADSCrossRef
77.
go back to reference Kopytko M, Wrobel J, Jozwikowska K, Rogalski A, Antoszewski J, Akhavan ND, Umana-Membreno GA, Faraone L, Becker CR (2015) Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J Electron Mater 44(1):158–166ADSCrossRef Kopytko M, Wrobel J, Jozwikowska K, Rogalski A, Antoszewski J, Akhavan ND, Umana-Membreno GA, Faraone L, Becker CR (2015) Engineering the bandgap of unipolar HgCdTe-based nBn infrared photodetectors. J Electron Mater 44(1):158–166ADSCrossRef
79.
go back to reference Benyahia D, Martyniuk P, Kopytko M, Antoszewski J, Gawron W, Madejczyk P, Rutkowski J, Gu R, Faraone L (2016) nBn HgCdTe infrared detector with HgTe(HgCdTe)/CdTe SLs barrier. Opt Quant Electron 48:215CrossRef Benyahia D, Martyniuk P, Kopytko M, Antoszewski J, Gawron W, Madejczyk P, Rutkowski J, Gu R, Faraone L (2016) nBn HgCdTe infrared detector with HgTe(HgCdTe)/CdTe SLs barrier. Opt Quant Electron 48:215CrossRef
80.
go back to reference Gu R, Lei W, Antoszewski J, Madni I, Umana-Menbreno G, Faraone L (2016) Recent progress in MBE grown HgCdTe materials and devices at UWA. Proc SPIE 9819:98191ZADSCrossRef Gu R, Lei W, Antoszewski J, Madni I, Umana-Menbreno G, Faraone L (2016) Recent progress in MBE grown HgCdTe materials and devices at UWA. Proc SPIE 9819:98191ZADSCrossRef
82.
go back to reference Akhavan ND, Umana-Membreno GA, Gu R, Asadnia M, Antoszewski J, Faraone L (2016) Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation. IEEE Trans Electron Devices 63(12):4811–4818ADSCrossRef Akhavan ND, Umana-Membreno GA, Gu R, Asadnia M, Antoszewski J, Faraone L (2016) Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation. IEEE Trans Electron Devices 63(12):4811–4818ADSCrossRef
83.
go back to reference Akhavan ND, Umana-Membreno GA, Gu R (2018) Optimization of superlattice barrier HgCdTe nBn infrared photodetectors based on an NEGF approach. IEEE Trans Electron Devices 65(2):591–598ADSCrossRef Akhavan ND, Umana-Membreno GA, Gu R (2018) Optimization of superlattice barrier HgCdTe nBn infrared photodetectors based on an NEGF approach. IEEE Trans Electron Devices 65(2):591–598ADSCrossRef
84.
go back to reference Izhnin II, Kurbanov KR, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Unipolar superlattice structures based on MBE HgCdTe for infrared detection. Appl Nanosci 10:4571–4576ADSCrossRef Izhnin II, Kurbanov KR, Voitsekhovskii AV, Nesmelov SN, Dzyadukh SM, Dvoretsky SA, Mikhailov NN, Sidorov GY, Yakushev MV (2020) Unipolar superlattice structures based on MBE HgCdTe for infrared detection. Appl Nanosci 10:4571–4576ADSCrossRef
85.
go back to reference Ashley T, Elliott CT (1985) Nonequilibrium devices for infra-red detection. Electron Lett 21(10):451–452ADSCrossRef Ashley T, Elliott CT (1985) Nonequilibrium devices for infra-red detection. Electron Lett 21(10):451–452ADSCrossRef
86.
go back to reference Schaake HF, Kinch MA, Chandra D, Aqariden F, Liao PK, Weirauch DF, Wan C-F, Scritchfield RE, Sullivan WW, Teherani JT, Shih HD (2008) High-operating-temperature MWIR detector diodes. J Electron Mater 37(9):1401–1405ADSCrossRef Schaake HF, Kinch MA, Chandra D, Aqariden F, Liao PK, Weirauch DF, Wan C-F, Scritchfield RE, Sullivan WW, Teherani JT, Shih HD (2008) High-operating-temperature MWIR detector diodes. J Electron Mater 37(9):1401–1405ADSCrossRef
87.
go back to reference Shi Q, Zhang S-K, Wang J-L, Chu J-H (2022) Progress on nBn infrared detectors. J Infrared Millim Waves 41(1):139–150 Shi Q, Zhang S-K, Wang J-L, Chu J-H (2022) Progress on nBn infrared detectors. J Infrared Millim Waves 41(1):139–150
Metadata
Title
II-VI Semiconductor-Based Unipolar Barrier Structures for Infrared Photodetector Arrays
Authors
A. V. Voitsekhovskii
S. N. Nesmelov
S. M. Dzyadukh
D. I. Gorn
S. A. Dvoretsky
N. N. Mikhailov
G. Y. Sidorov
M. V. Yakushev
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20510-1_6

Premium Partners