Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Image Background Subtraction and Partial Stylization Based on Style Representation of Convolutional Neural Networks

Authors : Edwin Kurniawan, Bok-Deuk Song, Yeon-Jun Choi, Suk-Ho Lee

Published in: Information Science and Applications

Publisher: Springer Singapore

share
SHARE

Abstract

Image background subtraction refers to the technique which eliminates the background in an image or video to extract the object (foreground) for further processing like object recognition in surveillance applications or object editing in film production, etc. The problem of image background subtraction becomes difficult if the background is cluttered, and therefore, it is still an open problem in computer vision. For a long time, conventional background extraction models have used only image-level information to model the background. However, recently, deep learning based methods have been successful in extracting styles from the image. Based on the use of deep neural styles, we propose an image background subtraction technique based on a style comparison. Furthermore, we show that the style comparison can be done pixel-wise, and also show that this can be applied to perform a spatially adaptive style transfer. As an example, we show that an automatic background elimination and background style transform can be achieved by the pixel-wise style comparison with minimal human interactions, i.e., by selecting only a small patch from the target and the style images.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11:31 CrossRef Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11:31 CrossRef
2.
go back to reference Barnich O, Droogenbroeck MV (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20:1709 Barnich O, Droogenbroeck MV (2011) ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20:1709
3.
go back to reference St-Charles PL, Bilodeau GA, Bergevin R (2014) Subsense: A universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24:359 MathSciNetCrossRef St-Charles PL, Bilodeau GA, Bergevin R (2014) Subsense: A universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24:359 MathSciNetCrossRef
4.
go back to reference Rother C, Kolmogorov V, Blake A (2004) GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309 CrossRef Rother C, Kolmogorov V, Blake A (2004) GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309 CrossRef
5.
go back to reference Dou J, Qin Q, Tu Z (2019) Background subtraction based on deep convolutional neural networks features. Multimedia Tools Appl 78:14549 CrossRef Dou J, Qin Q, Tu Z (2019) Background subtraction based on deep convolutional neural networks features. Multimedia Tools Appl 78:14549 CrossRef
6.
go back to reference Braham M, Droogenbroeck MV (2016) Deep background subtraction with scene-specific convolutional neural networks. In: International conference on systems, signals and image processing, IWSSIP, Bratislava, Slovakia, pp 1–4 Braham M, Droogenbroeck MV (2016) Deep background subtraction with scene-specific convolutional neural networks. In: International conference on systems, signals and image processing, IWSSIP, Bratislava, Slovakia, pp 1–4
7.
go back to reference Campilani M, Maddalena L, Alcover GM, Petrosino A, Salgado L (2017) A benchmarking framework for background subtraction in RGBD videos. In: International conference on image analysis and processing, ICIAP, Catania, Italy, pp 219–229 Campilani M, Maddalena L, Alcover GM, Petrosino A, Salgado L (2017) A benchmarking framework for background subtraction in RGBD videos. In: International conference on image analysis and processing, ICIAP, Catania, Italy, pp 219–229
8.
go back to reference Lim K, Jang W, Kim C (2017) Background subtraction using encoder-decoder structured convolutional neural network. In: IEEE International conference on advanced video and signal based surveillance, IEEE, Lecce, Italy, pp 1–6 Lim K, Jang W, Kim C (2017) Background subtraction using encoder-decoder structured convolutional neural network. In: IEEE International conference on advanced video and signal based surveillance, IEEE, Lecce, Italy, pp 1–6
9.
go back to reference Gatys LA, Ecker AS, Bethege M (2019) Image style transfer using convolutional neural networks. In: IEEE Conference on computer vision and pattern recognition, IEEE, Lasvegas, USA, pp 2414–2423 Gatys LA, Ecker AS, Bethege M (2019) Image style transfer using convolutional neural networks. In: IEEE Conference on computer vision and pattern recognition, IEEE, Lasvegas, USA, pp 2414–2423
10.
go back to reference Li Y, Wang N, Liu J, Hou X (2017) Demystifying neural style transfer. In: International joint conference on artificial intelligence,Melbourne, Australia, pp 2230–2236 Li Y, Wang N, Liu J, Hou X (2017) Demystifying neural style transfer. In: International joint conference on artificial intelligence,Melbourne, Australia, pp 2230–2236
Metadata
Title
Image Background Subtraction and Partial Stylization Based on Style Representation of Convolutional Neural Networks
Authors
Edwin Kurniawan
Bok-Deuk Song
Yeon-Jun Choi
Suk-Ho Lee
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6385-4_3

Premium Partner