Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 4/2020

01-10-2020 | MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Image Classification by Mixed Finite Element Method and Orthogonal Legendre Moments

Authors: Amal Hjouji, Jaouad EL-Mekkaoui, Mosatafa Jourhmane

Published in: Pattern Recognition and Image Analysis | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose a new classification system for image databases, particularly valid for noisy and geometrically distorted images. This system consists of three steps. In the first step, we apply a new image denoising technique based on the resolution of the Perona and Malik model using the finite element method (FEM). In the second step, we use the orthogonal invariant moments, applied to the obtained denoised images, to extract the feature vectors of images. In this step, we use a new set of orthogonal polynomials derived from the orthogonal Legendre polynomials, we call them orthogonal adapted-Legendre polynomials. These polynomials are used to define a series of orthogonal moments, which are invariant to translation, rotation, and scale. In the third steps, we use the radial basis function neural network (RBF), where the calculated feature vectors are the inputs of the input layer. To show the effectiveness of the proposed approach, we perform experimental tests and a comparative study with other well-known classification systems. The results obtained show the superiority and efficiency of our system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Rokach and O. Maimon, Clustering Methods, Data Mining, and Knowledge Discovery Handbook (Springer US, 2005), pp. 321–352.CrossRef L. Rokach and O. Maimon, Clustering Methods, Data Mining, and Knowledge Discovery Handbook (Springer US, 2005), pp. 321–352.CrossRef
2.
go back to reference J. A. Lozano, J. M. Pena, and P. Larranaga, “An empirical comparison of four initialization methods for the k-means algorithm,” Pattern Recognit. Lett. 20 (1999), pp. 1027–1040.CrossRef J. A. Lozano, J. M. Pena, and P. Larranaga, “An empirical comparison of four initialization methods for the k-means algorithm,” Pattern Recognit. Lett. 20 (1999), pp. 1027–1040.CrossRef
3.
go back to reference P. Lagacherie, D. R. Cazemier, P. F. M. van Gaans, and P. A. Burrough, “Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area,” Geoderma 77 (24), 197–216 (1997).CrossRef P. Lagacherie, D. R. Cazemier, P. F. M. van Gaans, and P. A. Burrough, “Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area,” Geoderma 77 (24), 197–216 (1997).CrossRef
4.
go back to reference J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well separated clusters,” J. Cybern. 3 (3), 32–57 (1974).MathSciNetCrossRef J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well separated clusters,” J. Cybern. 3 (3), 32–57 (1974).MathSciNetCrossRef
5.
go back to reference I. Guyon, “Applications of neural networks to character recognition,” Int. J. Pattern Recognit. Artif. Intell. 5, 353–382 (1991).CrossRef I. Guyon, “Applications of neural networks to character recognition,” Int. J. Pattern Recognit. Artif. Intell. 5, 353–382 (1991).CrossRef
6.
go back to reference D. S. Broomhead and D. Lowe, Radial Basis Functions, Multi-Variable Functional Interpolation, and Adaptive Networks. Technical Report (RSRE, 1988), pp. 41–48. D. S. Broomhead and D. Lowe, Radial Basis Functions, Multi-Variable Functional Interpolation, and Adaptive Networks. Technical Report (RSRE, 1988), pp. 41–48.
7.
go back to reference J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Comput. 1, 281–294 (1989).CrossRef J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Comput. 1, 281–294 (1989).CrossRef
9.
go back to reference A. Hjouji, M. Jourhmane, J. El-Mekkaoui, H. Qjidaa, and B. Bouikhalene, “Image retrieval and classification using shifted Legendre invariant moments and radial basis functions neural networks,” Procedia Comput. Sci. 148, 154–163 (2019).CrossRef A. Hjouji, M. Jourhmane, J. El-Mekkaoui, H. Qjidaa, and B. Bouikhalene, “Image retrieval and classification using shifted Legendre invariant moments and radial basis functions neural networks,” Procedia Comput. Sci. 148, 154–163 (2019).CrossRef
10.
go back to reference G. A. Papakostas, E. G. Karakasis, and D. E. Koulouriotis, “Novel moment invariants for improved classification performance in computer vision applications,” Pattern Recognit. 43 (1), 58–68 (2010).CrossRef G. A. Papakostas, E. G. Karakasis, and D. E. Koulouriotis, “Novel moment invariants for improved classification performance in computer vision applications,” Pattern Recognit. 43 (1), 58–68 (2010).CrossRef
11.
go back to reference K. M. Hosny, “Refined translation and scale Legendre moment invariants,” Pattern Recognit. Lett. 31, 533–538 (2010).CrossRef K. M. Hosny, “Refined translation and scale Legendre moment invariants,” Pattern Recognit. Lett. 31, 533–538 (2010).CrossRef
12.
13.
go back to reference R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE Trans. Image Process. 10 (9), 1357–1364 (2001).MathSciNetCrossRef R. Mukundan, S. H. Ong, and P. A. Lee, “Image analysis by Tchebichef moments,” IEEE Trans. Image Process. 10 (9), 1357–1364 (2001).MathSciNetCrossRef
15.
go back to reference M. El Mallahi, J. El-Mekkaoui, A. Zouhri, H. Amakdouf, and H. Qjidaa, “Rotation scaling and translation invariants of 3D radial shifted Legendre moments,” Int. J. Autom. Comput. 15, 169–180 (2018).CrossRef M. El Mallahi, J. El-Mekkaoui, A. Zouhri, H. Amakdouf, and H. Qjidaa, “Rotation scaling and translation invariants of 3D radial shifted Legendre moments,” Int. J. Autom. Comput. 15, 169–180 (2018).CrossRef
16.
go back to reference C. W. Chong, P. Raveendran, and R. Mukundan, “Translation and scale invariants of Legendre moments,” Pattern Recognit. 37 (1), 119–129 (2004).CrossRef C. W. Chong, P. Raveendran, and R. Mukundan, “Translation and scale invariants of Legendre moments,” Pattern Recognit. 37 (1), 119–129 (2004).CrossRef
18.
go back to reference M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inf. Theory 8, 179–187 (1962).MATH M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inf. Theory 8, 179–187 (1962).MATH
19.
20.
go back to reference M. El Mallahi, A. Zouhri, J. Mekkaoui, and H. Qjidaa, “Radial Meixner moments for rotational invariant pattern recognition,” in IEEE 2017 Intelligent Systems and Computer Vision (ISCV) (2017). M. El Mallahi, A. Zouhri, J. Mekkaoui, and H. Qjidaa, “Radial Meixner moments for rotational invariant pattern recognition,” in IEEE 2017 Intelligent Systems and Computer Vision (ISCV) (2017).
21.
go back to reference C. H. Teh and R. T. Chin, “On digital approximation of moment in invariants,” Comput. Vision Graphics Image Process. 33 (3), 318–326 (1986).CrossRef C. H. Teh and R. T. Chin, “On digital approximation of moment in invariants,” Comput. Vision Graphics Image Process. 33 (3), 318–326 (1986).CrossRef
22.
go back to reference C. H. Teh and R. T. Chin, “On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Mach. Intell. 10 (4), 496–513 (1988).CrossRef C. H. Teh and R. T. Chin, “On image analysis by the methods of moments,” IEEE Trans. Pattern Anal. Mach. Intell. 10 (4), 496–513 (1988).CrossRef
23.
go back to reference P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).CrossRef P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).CrossRef
24.
go back to reference F. Catte, P. L. Lions, J. M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Anal. 29, 182–193 (1992).MathSciNetCrossRef F. Catte, P. L. Lions, J. M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Anal. 29, 182–193 (1992).MathSciNetCrossRef
25.
go back to reference A. Handlovicova, K. Mikula, and F. Sgallari, “Variational numerical methods for solving nonlinear diffusion equations arising in image processing,” J. Visual Commun. Image Representation 13, 217–237 (2002).CrossRef A. Handlovicova, K. Mikula, and F. Sgallari, “Variational numerical methods for solving nonlinear diffusion equations arising in image processing,” J. Visual Commun. Image Representation 13, 217–237 (2002).CrossRef
26.
go back to reference L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion II,” SIAM J. Numer. Anal. 29, 845–866 (1992).MathSciNetCrossRef L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion II,” SIAM J. Numer. Anal. 29, 845–866 (1992).MathSciNetCrossRef
27.
go back to reference R. Stenberg, “A technique for analysing finite element methods for viscous incompressible flow,” Int. J. Numer. Methods Fluids 11, 935–948 (1990).MathSciNetCrossRef R. Stenberg, “A technique for analysing finite element methods for viscous incompressible flow,” Int. J. Numer. Methods Fluids 11, 935–948 (1990).MathSciNetCrossRef
28.
go back to reference A. Hjouji, J. El-Mekkaoui, and M. Jourhmane, “Mixed finite element method for nonlinear diffusion equation in image processing,” Pattern Recognit. Image Anal. 29, 296–308 (2019).CrossRef A. Hjouji, J. El-Mekkaoui, and M. Jourhmane, “Mixed finite element method for nonlinear diffusion equation in image processing,” Pattern Recognit. Image Anal. 29, 296–308 (2019).CrossRef
29.
go back to reference L. Alvarez and J. M. Morel, “Formalization and computational aspects of image analysis,” Acta Numer. 3, 1–59 (1994).MathSciNetCrossRef L. Alvarez and J. M. Morel, “Formalization and computational aspects of image analysis,” Acta Numer. 3, 1–59 (1994).MathSciNetCrossRef
30.
go back to reference T. Preusser and M. Rumpf, “An adaptive finite element method for large scale image processing,” in Proceedings of ScaleSpace-99 (Berlin, 1999), pp. 223–234. T. Preusser and M. Rumpf, “An adaptive finite element method for large scale image processing,” in Proceedings of ScaleSpace-99 (Berlin, 1999), pp. 223–234.
33.
34.
go back to reference N. J. Walkington, “Algorithms for computing motion by mean curvature,” SIAM J. Numer. Anal. 33, 2215–2238, (1996).MathSciNetCrossRef N. J. Walkington, “Algorithms for computing motion by mean curvature,” SIAM J. Numer. Anal. 33, 2215–2238, (1996).MathSciNetCrossRef
35.
go back to reference F. Brezzi and R. Falk, “Stability of higher order Taylor–Hood methods,” SIAM J. Numer. Anal. 28 (3), 581–590 (1991).MathSciNetCrossRef F. Brezzi and R. Falk, “Stability of higher order Taylor–Hood methods,” SIAM J. Numer. Anal. 28 (3), 581–590 (1991).MathSciNetCrossRef
36.
go back to reference S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed. (Springer-Verlag, New York, 2002).CrossRef S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed. (Springer-Verlag, New York, 2002).CrossRef
37.
go back to reference C. Wieners, “Taylor–Hood elements in 3D,” in Analysis and Simulation of Multifield Problems (Springer-Verlag, Berlin–Heidelberg, 2003), pp.189–196. C. Wieners, “Taylor–Hood elements in 3D,” in Analysis and Simulation of Multifield Problems (Springer-Verlag, Berlin–Heidelberg, 2003), pp.189–196.
38.
go back to reference A. Handlovicova, K. Mikula, and A. Sarti, “Numerical solution of parabolic equations related to level set formulation of mean curvature flow,” Comput. Visual. Sci. 1, 179–182 (1999).MATH A. Handlovicova, K. Mikula, and A. Sarti, “Numerical solution of parabolic equations related to level set formulation of mean curvature flow,” Comput. Visual. Sci. 1, 179–182 (1999).MATH
39.
go back to reference J. Kacur and K. Mikula, “Solution of nonlinear diffusion appearing in image smoothing and edge detection,” Appl. Numer. Math. 17, 4759 (1995).MathSciNetCrossRef J. Kacur and K. Mikula, “Solution of nonlinear diffusion appearing in image smoothing and edge detection,” Appl. Numer. Math. 17, 4759 (1995).MathSciNetCrossRef
40.
go back to reference R. Eymard, T. Gallouet, and R. Herbin, “The finite volume method,” in Handbook for Numerical Analysis, Ed. by Ph. Ciarlet and P. L. Lions (Elsevier, Amsterdam, 2000), Vol. 7, pp. 715–1022.MATH R. Eymard, T. Gallouet, and R. Herbin, “The finite volume method,” in Handbook for Numerical Analysis, Ed. by Ph. Ciarlet and P. L. Lions (Elsevier, Amsterdam, 2000), Vol. 7, pp. 715–1022.MATH
41.
go back to reference E. Bansch and K. Mikula, Adaptivity in 3D Image Process. Preprint 99–14, Zentrum fur Technomathematik (Univ. Bremen, 1999). E. Bansch and K. Mikula, Adaptivity in 3D Image Process. Preprint 99–14, Zentrum fur Technomathematik (Univ. Bremen, 1999).
42.
go back to reference J. El-Mekkaoui and A. Elkhalfi, “A mixed finite element method with new boundary condition,” Int. J. Math. Models Methods Appl. Sci. 8, 521–528 (2014). J. El-Mekkaoui and A. Elkhalfi, “A mixed finite element method with new boundary condition,” Int. J. Math. Models Methods Appl. Sci. 8, 521–528 (2014).
43.
go back to reference A. Sarti, K. Mikula, and F. Sgallari, “Nonlinear multiscale analysis of 3D echocardiographic sequences,” IEEE Trans. Med. Imaging 18, 453–466 (1999).CrossRef A. Sarti, K. Mikula, and F. Sgallari, “Nonlinear multiscale analysis of 3D echocardiographic sequences,” IEEE Trans. Med. Imaging 18, 453–466 (1999).CrossRef
44.
go back to reference O. Koubaiti, J. El-Mekkaoui, and A. Elkhalfi, “Complete study for solving Navier–Lamé equation with new boundary condition using mini element method,” Int. J. Mech. 12, 46–58 (2018).MATH O. Koubaiti, J. El-Mekkaoui, and A. Elkhalfi, “Complete study for solving Navier–Lamé equation with new boundary condition using mini element method,” Int. J. Mech. 12, 46–58 (2018).MATH
45.
go back to reference O. Koubaiti, A. Elkhalfi, J. El-Mekkaoui, and N. Mastorakis, “Solving the problem of constraints due to Dirichlet boundary conditions in the context of the mini element method,” Int. J. Mech. 14 (2020). O. Koubaiti, A. Elkhalfi, J. El-Mekkaoui, and N. Mastorakis, “Solving the problem of constraints due to Dirichlet boundary conditions in the context of the mini element method,” Int. J. Mech. 14 (2020).
46.
go back to reference E. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer-Verlag, New York, 1991).CrossRef E. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer-Verlag, New York, 1991).CrossRef
47.
go back to reference http://www.dabi.temple.edu/shape/mpeg7/dataset.html http://www.dabi.temple.edu/shape/mpeg7/dataset.html
48.
go back to reference http://www.cs.columbia.edu/cave/software/softlib/coil-20.php http://www.cs.columbia.edu/cave/software/softlib/coil-20.php
49.
go back to reference H. Zhang, H. Z. Shu, G. N. Han, G. Coatrieux, L. M. Luo, and J. L. Coatrieux, “Blurred image recognition by Legendre moment invariants,” IEEE Trans. Image Process. 19 (3), 596–611 (2010).MathSciNetCrossRef H. Zhang, H. Z. Shu, G. N. Han, G. Coatrieux, L. M. Luo, and J. L. Coatrieux, “Blurred image recognition by Legendre moment invariants,” IEEE Trans. Image Process. 19 (3), 596–611 (2010).MathSciNetCrossRef
50.
go back to reference A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing (2012), pp. 1097–1105. A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing (2012), pp. 1097–1105.
51.
go back to reference L. Cao, R. Zhi, and Y. Jin, “Translation and scale invariants of Krawtchouk moments,” Inf. Process. Lett. 130, 30–35 (2018).MathSciNetCrossRef L. Cao, R. Zhi, and Y. Jin, “Translation and scale invariants of Krawtchouk moments,” Inf. Process. Lett. 130, 30–35 (2018).MathSciNetCrossRef
Metadata
Title
Image Classification by Mixed Finite Element Method and Orthogonal Legendre Moments
Authors
Amal Hjouji
Jaouad EL-Mekkaoui
Mosatafa Jourhmane
Publication date
01-10-2020
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 4/2020
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820040185

Other articles of this Issue 4/2020

Pattern Recognition and Image Analysis 4/2020 Go to the issue

PATTERN RECOGNITION AND IMAGE ANALYSIS AUTOMATED SYSTEMS, HARDWARE AND SOFTWARE

FTViewer Application for Analysis and Visualization of Functional Tomograms of Complex Systems

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Taxonomy of Performance Measures for Contrast Enhancement

Premium Partner