Skip to main content
Top

27-08-2024 | Research

Image Retrieval Using Multilayer Feature Aggregation Histogram

Authors: Fen Lu, Guang-Hai Liu, Xiao-Zhi Gao

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aggregating the diverse features into a compact representation is a hot issue in image retrieval. However, aggregating the differential feature of multilayer into a discriminative representation remains challenging. Inspired by the value-guided neural mechanisms, a novel representation method, namely, the multilayer feature aggregation histogram was proposed to image retrieval. It can aggregate multilayer features, such as low-, mid-, and high-layer features, into a discriminative yet compact representation via simulating the neural mechanisms that mediate the ability to make value-guided decisions. The highlights of the proposed method have the following: (1) A detail-attentive map was proposed to represent the aggregation of low- and mid-layer features. It can be well used to evaluate the distinguishable detail feature. (2) A simple yet straightforward aggregation method is proposed to re-evaluate the distinguishable high-layer feature. It can provide aggregated features including detail, object, and semantic by using semantic-attentive map. (3) A novel whitening method, namely difference whitening, is introduced to reduce dimensionality. It did not need to seek a training dataset of semantical similarity and can provide a compact yet discriminative representation. Experiments on the popular benchmark datasets demonstrate the proposed method can obviously increase retrieval performance in terms of mAP metric. The proposed method using 128-dimensionality representation can provide significantly higher mAPs than the DSFH, DWDF, and OSAH methods by 0.083, 0.043, and 0.022 on the Oxford5k dataset and by 0.195, 0.036, and 0.071 on the Paris6k dataset. The difference whitening method can conveniently transfer the deep learning model to a new task. Our method provided competitive performance compared with the existing aggregation methods and can retrieve scene images with similar colors, objects, and semantics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu G-H, Yang J-Y. Deep-seated features histogram: A novel image retrieval method. Pattern Recogn. 2021;116:107926.CrossRef Liu G-H, Yang J-Y. Deep-seated features histogram: A novel image retrieval method. Pattern Recogn. 2021;116:107926.CrossRef
2.
go back to reference Chen W, Liu Y, Wang W, Bakker EM, Georgiou T, Fieguth P, et al. Deep learning for instance retrieval: A survey. IEEE Trans Pattern Anal Mach Intell. 2023;45(6):7270–92.CrossRef Chen W, Liu Y, Wang W, Bakker EM, Georgiou T, Fieguth P, et al. Deep learning for instance retrieval: A survey. IEEE Trans Pattern Anal Mach Intell. 2023;45(6):7270–92.CrossRef
3.
go back to reference Liu G-H, Zhang L, Hou Y-K, Li Z-Y, Yang J-Y. Image retrieval based on multi-texton histogram. Pattern Recogn. 2010;43(7):2380–9.CrossRef Liu G-H, Zhang L, Hou Y-K, Li Z-Y, Yang J-Y. Image retrieval based on multi-texton histogram. Pattern Recogn. 2010;43(7):2380–9.CrossRef
4.
go back to reference Julesz B. Textons, the elements of texture perception, and their interactions. Nature. 1981;290(5802):91–7.CrossRef Julesz B. Textons, the elements of texture perception, and their interactions. Nature. 1981;290(5802):91–7.CrossRef
5.
6.
7.
go back to reference Hubel D, Wiesel TN. Receptive fields, Binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.CrossRef Hubel D, Wiesel TN. Receptive fields, Binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.CrossRef
8.
go back to reference Liu Y, Li M, Zhang X, Lu Y, Gong H, Yin J, et al. Hierarchical representation for chromatic processing across Macaque V1, V2, and V4. Neuron. 2020;108(3):538-550.e5.CrossRef Liu Y, Li M, Zhang X, Lu Y, Gong H, Yin J, et al. Hierarchical representation for chromatic processing across Macaque V1, V2, and V4. Neuron. 2020;108(3):538-550.e5.CrossRef
9.
go back to reference Iigaya K, Yi S, Wahle IA, Tanwisuth S, Cross L, O’Doherty J. Neural mechanisms underlying the hierarchical construction of perceived aesthetic value. Nat Commun. 2023;14:127.CrossRef Iigaya K, Yi S, Wahle IA, Tanwisuth S, Cross L, O’Doherty J. Neural mechanisms underlying the hierarchical construction of perceived aesthetic value. Nat Commun. 2023;14:127.CrossRef
10.
go back to reference Bongioanni A, Folloni D, Verhagen L, Sallet J, Klein-Flugge M, Rushworth M. Activation and disruption of a neural mechanism for novel choice in monkeys. Nature. 2021;591:270–4.CrossRef Bongioanni A, Folloni D, Verhagen L, Sallet J, Klein-Flugge M, Rushworth M. Activation and disruption of a neural mechanism for novel choice in monkeys. Nature. 2021;591:270–4.CrossRef
11.
go back to reference Alzu’bi A, Amira A, Ramzan N. Semantic content-based image retrieval: A comprehensive study. J Vis Commun Image Represent. 2015;32:20–54.CrossRef Alzu’bi A, Amira A, Ramzan N. Semantic content-based image retrieval: A comprehensive study. J Vis Commun Image Represent. 2015;32:20–54.CrossRef
12.
go back to reference Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):971–87.CrossRef Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):971–87.CrossRef
13.
go back to reference Lowe DG. Distinctive image features from scale-invariant key-points. Int J Comput Vis. 2004;60:91–110.CrossRef Lowe DG. Distinctive image features from scale-invariant key-points. Int J Comput Vis. 2004;60:91–110.CrossRef
14.
go back to reference Bay H, Ess A, Tuytelaars T, Gool LV. Speeded-up robust features (SURF). Comput Vis Image Underst. 2008;110(3):346–59.CrossRef Bay H, Ess A, Tuytelaars T, Gool LV. Speeded-up robust features (SURF). Comput Vis Image Underst. 2008;110(3):346–59.CrossRef
15.
go back to reference Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.CrossRef Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980;12(1):97–136.CrossRef
16.
17.
go back to reference Wang XY, Yu YJ, Yang HY. An effective image retrieval scheme using color, texture and shape features. Comput Stand Inter. 2011;33(1):59–68.CrossRef Wang XY, Yu YJ, Yang HY. An effective image retrieval scheme using color, texture and shape features. Comput Stand Inter. 2011;33(1):59–68.CrossRef
18.
go back to reference Yu J, Qin Z, Wan T, Zhang X. Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing. 2013;120:355–64.CrossRef Yu J, Qin Z, Wan T, Zhang X. Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing. 2013;120:355–64.CrossRef
19.
go back to reference Zhang S, Yang M, Wang X, Lin Y, Tian Q. Semantic-aware co-indexing for image retrieval. IEEE Trans Pattern Anal Mach Intell. 2015;37(12):2573–87.CrossRef Zhang S, Yang M, Wang X, Lin Y, Tian Q. Semantic-aware co-indexing for image retrieval. IEEE Trans Pattern Anal Mach Intell. 2015;37(12):2573–87.CrossRef
20.
go back to reference Kan S, Cen Y, He Z, Zhang Z, Zhang L, Wang Y. Supervised deep feature embedding with handcrafted feature. IEEE Trans Image Process. 2019;28(12):5809–23.MathSciNetCrossRef Kan S, Cen Y, He Z, Zhang Z, Zhang L, Wang Y. Supervised deep feature embedding with handcrafted feature. IEEE Trans Image Process. 2019;28(12):5809–23.MathSciNetCrossRef
21.
go back to reference Liu S, Sun M, Feng L, Qiao H, Chen S, Liu Y. Social neighborhood graph and multigraph fusion ranking for multifeature image retrieval. IEEE Trans Neural Netw Learn Syst. 2021;32(3):1389–99.MathSciNetCrossRef Liu S, Sun M, Feng L, Qiao H, Chen S, Liu Y. Social neighborhood graph and multigraph fusion ranking for multifeature image retrieval. IEEE Trans Neural Netw Learn Syst. 2021;32(3):1389–99.MathSciNetCrossRef
22.
go back to reference Zhou W, Li H, Sun J, Tian Q. Collaborative index embedding for image retrieval. IEEE Trans Pattern Anal Mach Intell. 2018;40(5):1154–66.CrossRef Zhou W, Li H, Sun J, Tian Q. Collaborative index embedding for image retrieval. IEEE Trans Pattern Anal Mach Intell. 2018;40(5):1154–66.CrossRef
23.
go back to reference Staszewski P, Jaworski M, Cao J, Rutkowski L. A new approach to descriptors generation for image retrieval by analyzing activations of deep neural network layers. IEEE Trans Neural Netw Learn Syst. 2022;33(12):7913–20.MathSciNetCrossRef Staszewski P, Jaworski M, Cao J, Rutkowski L. A new approach to descriptors generation for image retrieval by analyzing activations of deep neural network layers. IEEE Trans Neural Netw Learn Syst. 2022;33(12):7913–20.MathSciNetCrossRef
24.
go back to reference Zhang Z, Xie Y, Zhang W, Tian Q. Effective image retrieval via multilinear multi-index fusion. IEEE Trans Multimedia. 2019;21(11):2878–90.CrossRef Zhang Z, Xie Y, Zhang W, Tian Q. Effective image retrieval via multilinear multi-index fusion. IEEE Trans Multimedia. 2019;21(11):2878–90.CrossRef
25.
go back to reference Bosch A, Zisserman A, Munoz X. Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell. 2008;30(4):712–27.CrossRef Bosch A, Zisserman A, Munoz X. Scene classification using a hybrid generative/discriminative approach. IEEE Trans Pattern Anal Mach Intell. 2008;30(4):712–27.CrossRef
26.
go back to reference Cui C, Shen Z, Huang J, Chen M, Xu M, Wang M, et al. Adaptive feature aggregation in deep multi-task convolutional neural networks. IEEE Trans Circuits Syst Video Technol. 2022;32(4):2133–44.CrossRef Cui C, Shen Z, Huang J, Chen M, Xu M, Wang M, et al. Adaptive feature aggregation in deep multi-task convolutional neural networks. IEEE Trans Circuits Syst Video Technol. 2022;32(4):2133–44.CrossRef
32.
go back to reference Zhu SC, Liu XW, Wu YN. Exploring texture ensembles by efficient Markov chain Monte Carlo – toward a “trichromacy” theory of texture. IEEE Trans Pattern Anal Mach Intell. 2000;22(6):554–69.CrossRef Zhu SC, Liu XW, Wu YN. Exploring texture ensembles by efficient Markov chain Monte Carlo – toward a “trichromacy” theory of texture. IEEE Trans Pattern Anal Mach Intell. 2000;22(6):554–69.CrossRef
33.
go back to reference Sarkar R, Acton ST. SDL: Saliency-based dictionary learning framework for image similarity. IEEE Trans Image Process. 2018;27(2):749–63.MathSciNetCrossRef Sarkar R, Acton ST. SDL: Saliency-based dictionary learning framework for image similarity. IEEE Trans Image Process. 2018;27(2):749–63.MathSciNetCrossRef
34.
go back to reference Lu F, Liu G-H. Image retrieval using contrastive weight aggregation histograms. Digit Signal Process. 2022;123:103457.CrossRef Lu F, Liu G-H. Image retrieval using contrastive weight aggregation histograms. Digit Signal Process. 2022;123:103457.CrossRef
35.
go back to reference Zhang B-J, Liu G-H, Hu J-K. Filtering deep convolutional features for image retrieval. Int J Pattern Recognit Artif Intell. 2022;36(01):2252003.CrossRef Zhang B-J, Liu G-H, Hu J-K. Filtering deep convolutional features for image retrieval. Int J Pattern Recognit Artif Intell. 2022;36(01):2252003.CrossRef
36.
go back to reference Kalantidis Y, Mellina C, Osindero S. Cross-dimensional weighting for aggregated deep convolutional features. Eur Conf Comput Vis. 2016;9913:685–701. Kalantidis Y, Mellina C, Osindero S. Cross-dimensional weighting for aggregated deep convolutional features. Eur Conf Comput Vis. 2016;9913:685–701.
37.
go back to reference Zhu J, Wang J, Pang S, Guan W, Li Z, Li Y, et al. Co-weighting semantic convolutional features for object retrieval. J Vis Commun Image Represent. 2019;62:368–80.CrossRef Zhu J, Wang J, Pang S, Guan W, Li Z, Li Y, et al. Co-weighting semantic convolutional features for object retrieval. J Vis Commun Image Represent. 2019;62:368–80.CrossRef
38.
go back to reference Radenović F, Tolias G, Chum O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans Pattern Anal Mach Intell. 2019;41(7):1655–68.CrossRef Radenović F, Tolias G, Chum O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans Pattern Anal Mach Intell. 2019;41(7):1655–68.CrossRef
39.
go back to reference Zhou J, Gan J, Gao W, Liang A. Image retrieval based on aggregated deep features weighted by regional significance and channel sensitivity. Inf Sci. 2021;577:69–80.MathSciNetCrossRef Zhou J, Gan J, Gao W, Liang A. Image retrieval based on aggregated deep features weighted by regional significance and channel sensitivity. Inf Sci. 2021;577:69–80.MathSciNetCrossRef
45.
go back to reference Liu G-H, Yang J-Y. Exploiting deep textures for image retrieval. Int J Mach Learn Cybern. 2023;14(2):483–94.CrossRef Liu G-H, Yang J-Y. Exploiting deep textures for image retrieval. Int J Mach Learn Cybern. 2023;14(2):483–94.CrossRef
46.
go back to reference Forcén JI, Pagola M, Barrenechea E, Bustince H. Co-occurrence of deep convolutional features for image search. Image Vis Comput. 2020;97:103909.CrossRef Forcén JI, Pagola M, Barrenechea E, Bustince H. Co-occurrence of deep convolutional features for image search. Image Vis Comput. 2020;97:103909.CrossRef
47.
go back to reference Lu Z, Liu G-H, Lu F, Zhang B-J. Image retrieval using dual-weighted deep feature descriptor. Int J Mach Learn Cybern. 2023;14(3):643–53.CrossRef Lu Z, Liu G-H, Lu F, Zhang B-J. Image retrieval using dual-weighted deep feature descriptor. Int J Mach Learn Cybern. 2023;14(3):643–53.CrossRef
48.
go back to reference Liu G-H, Li Z-Y, Yang J-Y, Zhang D. Exploiting sublimated deep features for image retrieval. Pattern Recogn. 2024;147:110076.CrossRef Liu G-H, Li Z-Y, Yang J-Y, Zhang D. Exploiting sublimated deep features for image retrieval. Pattern Recogn. 2024;147:110076.CrossRef
49.
go back to reference Liao K, Huang G, Zheng Y, Lin G, Cao C. Approximate object location deep visual representations for image retrieval. Displays. 2023;77:102376.CrossRef Liao K, Huang G, Zheng Y, Lin G, Cao C. Approximate object location deep visual representations for image retrieval. Displays. 2023;77:102376.CrossRef
50.
Metadata
Title
Image Retrieval Using Multilayer Feature Aggregation Histogram
Authors
Fen Lu
Guang-Hai Liu
Xiao-Zhi Gao
Publication date
27-08-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10334-9

Premium Partner