Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Immersed Boundary Projection Methods

Authors : Benedikt Dorschner, Tim Colonius

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Immersed boundary methods are an attractive alternative to body-fitted grids for complex geometries and fluid–structure interaction problems. The simplicity of the underlying Cartesian mesh allows for a number of useful conservation and stability properties to be embedded in the numerics, and for the resulting discrete equations to be solved efficiently and scalably. We review the immersed boundary projection method for incompressible flows, which implicitly satisfies the no-slip condition at immersed surfaces by solving a system of algebraic equations for surface traction. We discuss issues related to the smoothness of the surface stresses and solution strategies for strongly coupled fluid–structure interaction. For three-dimensional flows on unbounded domains, we discuss a fast lattice Green’s function method that provides for an adaptive domain comprising the vortical flow region and at the same time can be solved efficiently using extensions of the fast multipole method. To illustrate the methods, we present a series of benchmark simulations in two and three dimensions, ranging from inverted flag flutter, flow past spinning and inclined disks, and turbulent flow past a sphere.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Typically, the first-order errors that are associated with the regularization of the delta functions are limited to a finite region near the surface, and this results in better than first-order accuracy in the \(L_2\) norm.
 
Literature
go back to reference Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696MathSciNetMATHCrossRef Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696MathSciNetMATHCrossRef
go back to reference Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, NJMATH Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, NJMATH
go back to reference Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84MATHCrossRef Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84MATHCrossRef
go back to reference Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional model for the immersed boundary method. SIAM J Numer Anal 29(2):332–364MathSciNetMATHCrossRef Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional model for the immersed boundary method. SIAM J Numer Anal 29(2):332–364MathSciNetMATHCrossRef
go back to reference Brasey V, Hairer E (1993) Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2. SIAM J Numer Anal 30(2):538–552MathSciNetMATHCrossRef Brasey V, Hairer E (1993) Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2. SIAM J Numer Anal 30(2):538–552MathSciNetMATHCrossRef
go back to reference Catchirayer M, Boussuge JF, Sagaut P, Montagnac M, Papadogiannis D, Garnaud X (2018) Extended integral wall-model for large-eddy simulations of compressible wall-bounded turbulent flows. Phys Fluids 30(6):065106CrossRef Catchirayer M, Boussuge JF, Sagaut P, Montagnac M, Papadogiannis D, Garnaud X (2018) Extended integral wall-model for large-eddy simulations of compressible wall-bounded turbulent flows. Phys Fluids 30(6):065106CrossRef
go back to reference Chang W, Giraldo F, Perot B (2002) Analysis of an exact fractional step method. J Comput Phys 180(1):183–199MATHCrossRef Chang W, Giraldo F, Perot B (2002) Analysis of an exact fractional step method. J Comput Phys 180(1):183–199MATHCrossRef
go back to reference Chrust M, Dauteuille C, Bobinski T, Rokicki J, Goujon-Durand S, Wesfreid J, Bouchet G, Dušek J (2015) Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J Fluid Mech 770:189–209CrossRef Chrust M, Dauteuille C, Bobinski T, Rokicki J, Goujon-Durand S, Wesfreid J, Bouchet G, Dušek J (2015) Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J Fluid Mech 770:189–209CrossRef
go back to reference Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366MathSciNetMATHCrossRef Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366MathSciNetMATHCrossRef
go back to reference De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley
go back to reference Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801 Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801
go back to reference Dorschner B, Frapolli N, Chikatamarla SS, Karlin IV (2016) Grid refinement for entropic lattice Boltzmann models. Phys Rev E 94(5):053311MathSciNetCrossRef Dorschner B, Frapolli N, Chikatamarla SS, Karlin IV (2016) Grid refinement for entropic lattice Boltzmann models. Phys Rev E 94(5):053311MathSciNetCrossRef
go back to reference Dorschner B, Yu K, Mengaldo G, Colonius T (2020) A fast multi-resolution lattice green’s function method for elliptic difference equations. J Comput Phys 109270 Dorschner B, Yu K, Mengaldo G, Colonius T (2020) A fast multi-resolution lattice green’s function method for elliptic difference equations. J Comput Phys 109270
go back to reference Dreher J, Grauer R (2005) Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws. Parallel Comput 31(8–9):913–932MathSciNetCrossRef Dreher J, Grauer R (2005) Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws. Parallel Comput 31(8–9):913–932MathSciNetCrossRef
go back to reference Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Löffler F et al (2014) A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parallel Distrib Comput 74(12):3217–3227CrossRef Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Löffler F et al (2014) A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parallel Distrib Comput 74(12):3217–3227CrossRef
go back to reference Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60 Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J  Comput Phys 161(1):35–60
go back to reference Ghaddar N, Korczak K, Mikic B, Patera A (1986) Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. J Fluid Mech 163:99–127MathSciNetCrossRef Ghaddar N, Korczak K, Mikic B, Patera A (1986) Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. J Fluid Mech 163:99–127MathSciNetCrossRef
go back to reference Glowinski R, Pan TW, Periaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151(1–2):181–194 Glowinski R, Pan TW, Periaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151(1–2):181–194
go back to reference Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef
go back to reference Goza A, Colonius T (2017) A strongly-coupled immersed-boundary formulation for thin elastic structures. J Comput Phys 336:401–411MathSciNetMATHCrossRef Goza A, Colonius T (2017) A strongly-coupled immersed-boundary formulation for thin elastic structures. J Comput Phys 336:401–411MathSciNetMATHCrossRef
go back to reference Goza A, Liska S, Morley B, Colonius T (2016) Accurate computation of surface stresses and forces with immersed boundary methods. J Comput Phys 321:860–873MathSciNetMATHCrossRef Goza A, Liska S, Morley B, Colonius T (2016) Accurate computation of surface stresses and forces with immersed boundary methods. J Comput Phys 321:860–873MathSciNetMATHCrossRef
go back to reference Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the ibm-Peskin.pdf. J Comput Phys 223(1):10–49 Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the ibm-Peskin.pdf. J Comput Phys 223(1):10–49
go back to reference Gurugubelli P, Jaiman R (2015) Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J Fluid Mech 781:657–694MathSciNetMATHCrossRef Gurugubelli P, Jaiman R (2015) Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J Fluid Mech 781:657–694MathSciNetMATHCrossRef
go back to reference Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge-Kutta methods, vol 1409. Springer, BerlinMATH Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge-Kutta methods, vol 1409. Springer, BerlinMATH
go back to reference Hall CA (1985) Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J Algebraic Discrete Methods 6(2):220–236 Hall CA (1985) Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J Algebraic Discrete Methods 6(2):220–236
go back to reference Hansen PC (1998) Rank-deficient and discrete illposed problems: numerical aspects of linear inversion, vol 4. SIAM Hansen PC (1998) Rank-deficient and discrete illposed problems: numerical aspects of linear inversion, vol 4. SIAM
go back to reference Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253 Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253
go back to reference Hou G, Wang J, Layton A (2012) Numerical methods for fluidstructure interaction—a review. Commun Comput Phys 12(2):337–377 Hou G, Wang J, Layton A (2012) Numerical methods for fluidstructure interaction—a review. Commun Comput Phys 12(2):337–377
go back to reference Huang WX, Sung HJ (2009) An immersed boundary method for fluid-flexible structure interaction. Comput Methods Appl Mech Eng 198(33):2650–2661MATHCrossRef Huang WX, Sung HJ (2009) An immersed boundary method for fluid-flexible structure interaction. Comput Methods Appl Mech Eng 198(33):2650–2661MATHCrossRef
go back to reference Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347CrossRef Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347CrossRef
go back to reference Kallemov B, Bhalla A, Griffith B, Donev A (2016) An immersed boundary method for rigid bodies. Commun Appl Math Comput Sci 11(1):79–141MathSciNetMATHCrossRef Kallemov B, Bhalla A, Griffith B, Donev A (2016) An immersed boundary method for rigid bodies. Commun Appl Math Comput Sci 11(1):79–141MathSciNetMATHCrossRef
go back to reference Kim H, Durbin P (1988) Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys Fluids 31(11):3260–3265CrossRef Kim H, Durbin P (1988) Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys Fluids 31(11):3260–3265CrossRef
go back to reference Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736 Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736
go back to reference Kirkpatrick M, Armfield S, Kent J (2003) A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid. J Comput Phys 184(1):1–36 Kirkpatrick M, Armfield S, Kent J (2003) A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid. J Comput Phys 184(1):1–36
go back to reference Kress R (2014) Linear integral equations, 3rd edn, vol 82. Springer, Berlin Kress R (2014) Linear integral equations, 3rd edn, vol 82. Springer, Berlin
go back to reference Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef
go back to reference Lilly DK (1965) On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon Weather Rev 93(1):11–26CrossRef Lilly DK (1965) On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon Weather Rev 93(1):11–26CrossRef
go back to reference Liska S, Colonius T (2016) A fast lattice Green’s function method for solving viscous incompressible flows on unbounded domains. J Comput Phys 316:360–384MathSciNetMATHCrossRef Liska S, Colonius T (2016) A fast lattice Green’s function method for solving viscous incompressible flows on unbounded domains. J Comput Phys 316:360–384MathSciNetMATHCrossRef
go back to reference Liska S, Colonius T (2017) A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions. J Comput Phys 331:257–279MathSciNetMATHCrossRef Liska S, Colonius T (2017) A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions. J Comput Phys 331:257–279MathSciNetMATHCrossRef
go back to reference Lorenz RD (2007) Spinning flight: dynamics of frisbees, boomerangs, samaras, and skipping stones. Springer Science & Business Media Lorenz RD (2007) Spinning flight: dynamics of frisbees, boomerangs, samaras, and skipping stones. Springer Science & Business Media
go back to reference Mengaldo G, Liska S, Colonius KYT, Jardin T (2017) Immersed boundary lattice Green function methods for external aerodynamics. In: 23rd AIAA computational fluid dynamics conference, p 3621 Mengaldo G, Liska S, Colonius KYT, Jardin T (2017) Immersed boundary lattice Green function methods for external aerodynamics. In: 23rd AIAA computational fluid dynamics conference, p 3621
go back to reference Mohd-Yusof J (1997) For simulations of flow in complex geometries. Ann Res Briefs 317–327 Mohd-Yusof J (1997) For simulations of flow in complex geometries. Ann Res Briefs 317–327
go back to reference Mori Y, Peskin CS (2008) Implicit second-order immersed boundary methods with boundary mass. Comput Methods Appl Mech Eng 197(25–28):2049–2067MathSciNetMATHCrossRef Mori Y, Peskin CS (2008) Implicit second-order immersed boundary methods with boundary mass. Comput Methods Appl Mech Eng 197(25–28):2049–2067MathSciNetMATHCrossRef
go back to reference Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143(1):90–124MathSciNetMATHCrossRef Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143(1):90–124MathSciNetMATHCrossRef
go back to reference Nissen A, Kreiss G, Gerritsen M (2013) High order stable finite difference methods for the Schrodinger equation. J Sci Comput 55(1):173–199 Nissen A, Kreiss G, Gerritsen M (2013) High order stable finite difference methods for the Schrodinger equation. J Sci Comput 55(1):173–199
go back to reference Pereira J, Sousa J (1993) Finite volume calculations of self-sustained oscillations in a grooved channel. J Comput Phys 106(1):19–29MATHCrossRef Pereira J, Sousa J (1993) Finite volume calculations of self-sustained oscillations in a grooved channel. J Comput Phys 106(1):19–29MATHCrossRef
go back to reference Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems - part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24–25):3147–3170MATHCrossRef Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems - part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24–25):3147–3170MATHCrossRef
go back to reference Potts J, Crowther W (2001) Flight control of a spin stabilised axisymmetric disc-wing. In 39th aerospace sciences meeting and exhibit, p 253 Potts J, Crowther W (2001) Flight control of a spin stabilised axisymmetric disc-wing. In 39th aerospace sciences meeting and exhibit, p 253
go back to reference Potts J, Crowther W (2002) Frisbee (TM) aerodynamics. In 20th AIAA applied aerodynamics conference, p 3150 Potts J, Crowther W (2002) Frisbee (TM) aerodynamics. In 20th AIAA applied aerodynamics conference, p 3150
go back to reference Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re\(=\) 3700. J Fluid Mech 679:263–287MATHCrossRef Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re\(=\) 3700. J Fluid Mech 679:263–287MATHCrossRef
go back to reference Ryu J, Park SG, Kim B, Sung HJ (2015) Flapping dynamics of an inverted flag in a uniform flow. J Fluids Struct 57 Ryu J, Park SG, Kim B, Sung HJ (2015) Flapping dynamics of an inverted flag in a uniform flow. J Fluids Struct 57
go back to reference Seidl V, Muzaferija S, Perić M (1997) Parallel DNS with local grid refinement. Appl Sci Res 59(4):379–394MATHCrossRef Seidl V, Muzaferija S, Perić M (1997) Parallel DNS with local grid refinement. Appl Sci Res 59(4):379–394MATHCrossRef
go back to reference Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef
go back to reference Stein DB, Guy RD, Thomases B (2017) Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains. J Comput Phys 335:155–178MathSciNetMATHCrossRef Stein DB, Guy RD, Thomases B (2017) Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains. J Comput Phys 335:155–178MathSciNetMATHCrossRef
go back to reference Tezduyar TE, Behr M, Mittal S, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial domain/space-time procedure. II. Computation of free surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371 Tezduyar TE, Behr M, Mittal S, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial domain/space-time procedure. II. Computation of free surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371
go back to reference Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027MathSciNetMATHCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027MathSciNetMATHCrossRef
go back to reference Tian X, Xiao L, Zhang X, Yang J, Tao L, Yang D (2017) Flow around an oscillating circular disk at low to moderate Reynolds numbers. J Fluid Mech 812:1119–1145MathSciNetMATHCrossRef Tian X, Xiao L, Zhang X, Yang J, Tao L, Yang D (2017) Flow around an oscillating circular disk at low to moderate Reynolds numbers. J Fluid Mech 812:1119–1145MathSciNetMATHCrossRef
go back to reference Tornberg AK, Engquist B (2004) Numerical approximations of singular source terms in differential equations. J Comput Phys 200(2):462–488MathSciNetMATHCrossRef Tornberg AK, Engquist B (2004) Numerical approximations of singular source terms in differential equations. J Comput Phys 200(2):462–488MathSciNetMATHCrossRef
go back to reference Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef
go back to reference Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. J Fluids Eng 136(4):040909CrossRef Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. J Fluids Eng 136(4):040909CrossRef
go back to reference Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230(9):3479–3499MathSciNetMATHCrossRef Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230(9):3479–3499MathSciNetMATHCrossRef
go back to reference Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef
go back to reference Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228(20):7821–7836MathSciNetMATHCrossRef Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228(20):7821–7836MathSciNetMATHCrossRef
go back to reference Ye T, Mittal R, Udaykumar H, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef Ye T, Mittal R, Udaykumar H, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef
go back to reference You D, Wang M, Moin P, Mittal R (2007) Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J Fluid Mech 586:177–204MATHCrossRef You D, Wang M, Moin P, Mittal R (2007) Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J Fluid Mech 586:177–204MATHCrossRef
go back to reference Zahedi S, Tornberg AK (2010) Delta function approximations in level set methods by distance function extension. J Comput Phys 229:2199–2219MathSciNetMATHCrossRef Zahedi S, Tornberg AK (2010) Delta function approximations in level set methods by distance function extension. J Comput Phys 229:2199–2219MathSciNetMATHCrossRef
go back to reference Zhang N, Zheng ZC (2007) An improved direct-forcing immersed-boundary method for finite difference applications. J Comput Phys 221(1):250–268MathSciNetMATHCrossRef Zhang N, Zheng ZC (2007) An improved direct-forcing immersed-boundary method for finite difference applications. J Comput Phys 221(1):250–268MathSciNetMATHCrossRef
go back to reference Zhang X, Schmidt D, Perot B (2002) Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. J Comput Phys 175(2):764–791MATHCrossRef Zhang X, Schmidt D, Perot B (2002) Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. J Comput Phys 175(2):764–791MATHCrossRef
Metadata
Title
Immersed Boundary Projection Methods
Authors
Benedikt Dorschner
Tim Colonius
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_1

Premium Partners