Skip to main content
Top
Published in: Experimental Mechanics 4/2014

01-04-2014

Impact Failure of Planetary Materials:

Lateral Field Ejecta Measurements using Particle Image Velocimetry

Authors: J.D. Hogan, J.G. Spray, R.J. Rogers, G. Vincent, M. Schneider

Published in: Experimental Mechanics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamic fragmentation of a fine grained granitoid material has been examined. Target thicknesses ranged from 7 to 40 mm and impact energies from 12 to 2,500 J. Combined particle image velocimetry and image enhancement techniques are introduced and have been used to measure the size and velocity of material ejected laterally from the rear of the target during impact testing. Non-dimensional groups were formed and fitted with coefficients to predict median values of the distribution of mass and kinetic energy among radial distance, R, from the impact centre, ejecta velocities, v, and ejecta lengths, L. The statistics are well correlated with increasing non-dimensional impact energy (positive correlation for radial distance and velocity, and negative correlation for ejecta length). Median values were used to collapse cumulative distributions and non-centred Gaussian fits were used to describe these curves. Approximately 85 % of the total mass and kinetic energy is captured between R/R50 % = 0.3 to 2, v/v50 % = 0.3 to 2, and L/L50 % = 0.2 and 3. This data facilitates a better comparison among a wide range of test conditions, especially when attempting to extrapolate principal features of impacts into brittle materials at higher velocities. The ejecta tracking techniques and methodologies can be used to improve current impact testing experiments and computer modelling validation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Taken as the perpendicular axis to the largest spanning dimension.
 
2
Defined as the change in projectile kinetic energy (i.e., before and after impact if perforation occurs).
 
3
The radius is measured from the centre of the projectile to the hexagonal corner.
 
Literature
1.
go back to reference Hogan JD, Spray JG, Rogers RJ, Boonsue S, Vincent G, Schneider M (2011) Micro-scale energy dissipation mechanisms during dynamic fracture in natural polyphase ceramic blocks. Int J Impact Eng 38(12):931–939CrossRef Hogan JD, Spray JG, Rogers RJ, Boonsue S, Vincent G, Schneider M (2011) Micro-scale energy dissipation mechanisms during dynamic fracture in natural polyphase ceramic blocks. Int J Impact Eng 38(12):931–939CrossRef
2.
go back to reference Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24(10):985–998CrossRef Lambert DE, Ross CA (2000) Strain rate effects on dynamic fracture and strength. Int J Impact Eng 24(10):985–998CrossRef
3.
go back to reference Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001) Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min Sci 38(2):211–225CrossRef Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001) Effects of high temperatures on dynamic rock fracture. Int J Rock Mech Min Sci 38(2):211–225CrossRef
4.
go back to reference Zhou F, Molinari J-F, Ramesh K (2005) A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. Int J Solids Struct 42(1819):5181–5207CrossRefMATH Zhou F, Molinari J-F, Ramesh K (2005) A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. Int J Solids Struct 42(1819):5181–5207CrossRefMATH
5.
go back to reference Freund LB (1987) Stability of a dislocation threading a strained layer on a substrate. J Appl Mech Trans ASME 54(3):553– 557CrossRef Freund LB (1987) Stability of a dislocation threading a strained layer on a substrate. J Appl Mech Trans ASME 54(3):553– 557CrossRef
6.
go back to reference Hogan JD, Rogers RJ, Spray JG, Boonsue S (2012) Dynamic fragmentation of granite for impact energies of 6 to 28 J. Eng Fract Mech 79:103–125CrossRef Hogan JD, Rogers RJ, Spray JG, Boonsue S (2012) Dynamic fragmentation of granite for impact energies of 6 to 28 J. Eng Fract Mech 79:103–125CrossRef
7.
go back to reference Spray JG (2010) Frictional melting processes in planetary materials: from hypervelocity impact to earthquakes. Ann Rev Earth Planet Sci 38(1):221–254CrossRef Spray JG (2010) Frictional melting processes in planetary materials: from hypervelocity impact to earthquakes. Ann Rev Earth Planet Sci 38(1):221–254CrossRef
8.
go back to reference Hermalyn B, Schultz PH (2010) Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209(2):866–870CrossRef Hermalyn B, Schultz PH (2010) Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209(2):866–870CrossRef
9.
go back to reference Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013) Dynamic fragmentation of natural ceramic tiles: ejecta measurements and kinetic consequences. Int J Impact Eng 58:1–16CrossRef Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013) Dynamic fragmentation of natural ceramic tiles: ejecta measurements and kinetic consequences. Int J Impact Eng 58:1–16CrossRef
10.
go back to reference Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (In Press), Dynamic fragmentation of planetary materials: ejecta measurements and velocity scaling during impact testing. Planet Space Sci Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (In Press), Dynamic fragmentation of planetary materials: ejecta measurements and velocity scaling during impact testing. Planet Space Sci
11.
go back to reference Braslau D (1970) Partitioning of energy in hypervelocity impact against loose sand targets. J Geophys Res 75(20):3987–3999CrossRef Braslau D (1970) Partitioning of energy in hypervelocity impact against loose sand targets. J Geophys Res 75(20):3987–3999CrossRef
12.
go back to reference Hartmann WK (1985) Impact experiments: 1. ejecta velocity distributions and related results from regolith targets. Icarus 63(1):69–98CrossRef Hartmann WK (1985) Impact experiments: 1. ejecta velocity distributions and related results from regolith targets. Icarus 63(1):69–98CrossRef
13.
go back to reference Piekutowski A, Andrews R, Swift H (1977) Studying small-scale explosive cratering phenomena photographically. Int Congr High Speed Photogr (Photonics), 12th 97:177–183 Piekutowski A, Andrews R, Swift H (1977) Studying small-scale explosive cratering phenomena photographically. Int Congr High Speed Photogr (Photonics), 12th 97:177–183
14.
go back to reference Cintala MJ, Berthoud L, Horz F (1999) Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit Planet Sci 34(4):605–623CrossRef Cintala MJ, Berthoud L, Horz F (1999) Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit Planet Sci 34(4):605–623CrossRef
15.
go back to reference Fujiwara A, Tsukamoto A (1980) Experimental study on the velocity of fragments in collisional breakup. Icarus 44(1):142–153CrossRef Fujiwara A, Tsukamoto A (1980) Experimental study on the velocity of fragments in collisional breakup. Icarus 44(1):142–153CrossRef
16.
go back to reference Anderson JLB, Schultz PH, Heineck JT (2003) Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J Geophys Res 108(5094):10 Anderson JLB, Schultz PH, Heineck JT (2003) Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J Geophys Res 108(5094):10
17.
go back to reference Hogan J, Rogers R, Spray J, Vincent G, Schneider M (2013) Debris field kinetics during the dynamic fragmentation of polyphase natural ceramic blocks. Exp Mech:1–18 Hogan J, Rogers R, Spray J, Vincent G, Schneider M (2013) Debris field kinetics during the dynamic fragmentation of polyphase natural ceramic blocks. Exp Mech:1–18
18.
go back to reference Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013) Dynamic fragmentation of planetary materials: ejecta length quantification and semi-analytical modelling. Int J Impact Eng 62:219–228CrossRef Hogan JD, Spray JG, Rogers RJ, Vincent G, Schneider M (2013) Dynamic fragmentation of planetary materials: ejecta length quantification and semi-analytical modelling. Int J Impact Eng 62:219–228CrossRef
19.
go back to reference Hogan JD, Castillo JA, Rawle A, Spray JG, Rogers RJ (2013) Automated microscopy and particle size analysis of dynamic fragmentation in natural ceramics. Eng Fract Mech 98:80–91CrossRef Hogan JD, Castillo JA, Rawle A, Spray JG, Rogers RJ (2013) Automated microscopy and particle size analysis of dynamic fragmentation in natural ceramics. Eng Fract Mech 98:80–91CrossRef
20.
go back to reference Ryan EV (2000) Asteroid fragmentation and evolution of asteroids. Ann Rev Earth Planet Sci 28(1):367–389CrossRef Ryan EV (2000) Asteroid fragmentation and evolution of asteroids. Ann Rev Earth Planet Sci 28(1):367–389CrossRef
21.
go back to reference Grady D (2009) Dynamic fragmentation of solids. In: Shock wave science and technology reference library, vol 3. Springer, Berlin Heidelberg, pp 1–108 Grady D (2009) Dynamic fragmentation of solids. In: Shock wave science and technology reference library, vol 3. Springer, Berlin Heidelberg, pp 1–108
22.
go back to reference Zhang Q, Zhao J (2013) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng:1–68 Zhang Q, Zhao J (2013) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng:1–68
23.
24.
go back to reference Munson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley Munson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley
25.
go back to reference Grady DE (2009) Length scales and size distributions in dynamic fragmentation. Int J Fract 163(1–2):85–99 Grady DE (2009) Length scales and size distributions in dynamic fragmentation. Int J Fract 163(1–2):85–99
26.
go back to reference Zhou F, Molinari JF, Ramesh K (2006) Analysis of the brittle fragmentation of an expanding ring. Comput Mater Sci 37(1–2):74–85CrossRef Zhou F, Molinari JF, Ramesh K (2006) Analysis of the brittle fragmentation of an expanding ring. Comput Mater Sci 37(1–2):74–85CrossRef
27.
go back to reference Ai H, Ahrens T (2006) Simulation of dynamic response of granite: a numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng 33(1):1–10CrossRef Ai H, Ahrens T (2006) Simulation of dynamic response of granite: a numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng 33(1):1–10CrossRef
28.
go back to reference Maiti S, Rangaswamy K, Geubelle PH (2005) Mesoscale analysis of dynamic fragmentation of ceramics under tension. Acta Mater 53(3):823–834CrossRef Maiti S, Rangaswamy K, Geubelle PH (2005) Mesoscale analysis of dynamic fragmentation of ceramics under tension. Acta Mater 53(3):823–834CrossRef
29.
go back to reference Schmidt RM, Holsapple KA (1980) Theory and experiments on centrifuge cratering. J Geophys Res Solid Earth 85(B1):235–252CrossRef Schmidt RM, Holsapple KA (1980) Theory and experiments on centrifuge cratering. J Geophys Res Solid Earth 85(B1):235–252CrossRef
30.
go back to reference Fujiwara A, Kawaguchi J, Yeomans D, Abe M, Mukai T, Okada T, Saito J, Yano H, Yoshikawa M, Scheeres D, et al (2006) The rubble-pile asteroid itokawa as observed by hayabusa. Science 312(5778):1330–1334CrossRef Fujiwara A, Kawaguchi J, Yeomans D, Abe M, Mukai T, Okada T, Saito J, Yano H, Yoshikawa M, Scheeres D, et al (2006) The rubble-pile asteroid itokawa as observed by hayabusa. Science 312(5778):1330–1334CrossRef
Metadata
Title
Impact Failure of Planetary Materials:
Lateral Field Ejecta Measurements using Particle Image Velocimetry
Authors
J.D. Hogan
J.G. Spray
R.J. Rogers
G. Vincent
M. Schneider
Publication date
01-04-2014
Publisher
Springer US
Published in
Experimental Mechanics / Issue 4/2014
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-013-9831-5

Other articles of this Issue 4/2014

Experimental Mechanics 4/2014 Go to the issue

Premium Partners