Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 4/2021

23-01-2021 | Original Research Article

Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study

Authors: Devendra KC, Deb Kumar Shah, Amer M. Alanazi, M. Shaheer Akhtar

Published in: Journal of Electronic Materials | Issue 4/2021

Login to get access
share
SHARE

Abstract

Cadmium telluride (CdTe) is currently known to be one of the reliable cost-effective materials for manufacturing solar cells. In this work, different materials such as magnesium fluoride (MgF2), aluminum trioxide (Al2O3), tin oxide (SnO2), and magnesium oxide (MgO) were applied as a single antireflection coating (ARC) layer and characterized their optoelectrical properties of the resulting CdTe solar cells. A personal computer one-dimensional (PC1D) simulation study was carried out to instigate the overall performance when varying the thickness of the absorber and window layers. Simulation results confirmed that Al2O3 single ARC layer with thickness of 83 nm achieved the best efficiency of 17.81% as compared with the other ARC materials. The Al2O3 single ARC layer resulted in a short-circuit current of 2.89 A and open-circuit voltage of 0.740 V.
Literature
1.
go back to reference S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, Energy Environ. Sci. 4, 1606 (2011). CrossRef S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, Energy Environ. Sci. 4, 1606 (2011). CrossRef
2.
go back to reference I.S. Jung, J. Choi, D.K. Shah, and M. S. Akhtar, J. Nanoelectron. Optoelectron. 15, 720 (2020). CrossRef I.S. Jung, J. Choi, D.K. Shah, and M. S. Akhtar, J. Nanoelectron. Optoelectron. 15, 720 (2020). CrossRef
3.
go back to reference D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Chem. Phys. Lett. 754, 137756 (2020). CrossRef D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Chem. Phys. Lett. 754, 137756 (2020). CrossRef
4.
go back to reference H.I. Salim, V. Patel, A. Abbas, J.M. Walls, and I. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 3119 (2015). CrossRef H.I. Salim, V. Patel, A. Abbas, J.M. Walls, and I. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 3119 (2015). CrossRef
5.
go back to reference L.-C. Chen, Z-L. Tseng, and C.-C. Lin, J. Nanoelectron. Optoelectron. 14, 723 (2019). CrossRef L.-C. Chen, Z-L. Tseng, and C.-C. Lin, J. Nanoelectron. Optoelectron. 14, 723 (2019). CrossRef
6.
go back to reference K. Han, S.-Y. Jun, H. Lim, E. Bae, S.H. Park, D. Jung, N. Kwon, and S.G. Yu, J. Nanosci. Nanotechnol. 20, 7100 (2020). CrossRef K. Han, S.-Y. Jun, H. Lim, E. Bae, S.H. Park, D. Jung, N. Kwon, and S.G. Yu, J. Nanosci. Nanotechnol. 20, 7100 (2020). CrossRef
7.
go back to reference G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M.H. Rahman, J. Theor. Appl. Phys. 12, 327 (2018). CrossRef G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M.H. Rahman, J. Theor. Appl. Phys. 12, 327 (2018). CrossRef
8.
go back to reference D.K. Shah, S.Y. Han, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Nanosci. Nanotechnol. Lett. 11, 159 (2019). CrossRef D.K. Shah, S.Y. Han, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Nanosci. Nanotechnol. Lett. 11, 159 (2019). CrossRef
10.
11.
go back to reference I.M. Dharmadasa, A.E. Alam, A.A. Ojo, and O.K. Echendu, J. Mater. Sci. Mater. Electron. 30, 20330 (2019). CrossRef I.M. Dharmadasa, A.E. Alam, A.A. Ojo, and O.K. Echendu, J. Mater. Sci. Mater. Electron. 30, 20330 (2019). CrossRef
12.
go back to reference O.A. Dobrozhan, A.S. Opanasyuk, and V.V. Grynenko, J. Nano- Electron. Phys. 6, 4035 (2014). O.A. Dobrozhan, A.S. Opanasyuk, and V.V. Grynenko, J. Nano- Electron. Phys. 6, 4035 (2014).
13.
go back to reference S. Kaci, R. Rahmoune, A. Boukezzata, Y. Boudiaf, I. Bozetine, A. Keffous, L. Talbi, Y. Ouadah, K. Benfadel, A. Manseri, S. Achacha, H. Cheraga, and L. Guerbous, J. Nanoelectron. Optoelectron. 14, 1002 (2019). CrossRef S. Kaci, R. Rahmoune, A. Boukezzata, Y. Boudiaf, I. Bozetine, A. Keffous, L. Talbi, Y. Ouadah, K. Benfadel, A. Manseri, S. Achacha, H. Cheraga, and L. Guerbous, J. Nanoelectron. Optoelectron. 14, 1002 (2019). CrossRef
14.
go back to reference J.E. Park, S.M. Park, E.J. Bae, and D. Lim, J. Nanosci. Nanotechnol. 20, 6653 (2020). CrossRef J.E. Park, S.M. Park, E.J. Bae, and D. Lim, J. Nanosci. Nanotechnol. 20, 6653 (2020). CrossRef
15.
go back to reference D. Parashar, V.S.G. Krishna, S.N. Moger, R. Keshav, and M. G. Mahesha, Trans. Electr. Electron. Mater. 21, 587 (2020). CrossRef D. Parashar, V.S.G. Krishna, S.N. Moger, R. Keshav, and M. G. Mahesha, Trans. Electr. Electron. Mater. 21, 587 (2020). CrossRef
16.
go back to reference M.I. Khan, Shahnawaz, S. Imran, M.W. Yousaf, A. Wahab, F. Adil, S. Majeed, M.F. Khan and T. Aziz, J. Nanoelectron. Optoelectron. 14, 1582 (2019). CrossRef M.I. Khan, Shahnawaz, S. Imran, M.W. Yousaf, A. Wahab, F. Adil, S. Majeed, M.F. Khan and T. Aziz, J. Nanoelectron. Optoelectron. 14, 1582 (2019). CrossRef
17.
go back to reference Y. Zhang, S. Zhou, C. Li, C. Cao, P. Ren, and R. Luo, Sci. Adv. Mater. 11, 1773 (2019). CrossRef Y. Zhang, S. Zhou, C. Li, C. Cao, P. Ren, and R. Luo, Sci. Adv. Mater. 11, 1773 (2019). CrossRef
18.
go back to reference P.-C. Wang, F.-Z. Li, Y. Zhang, H.-C. Fan, X.-Q. Zhou, Y.-L. Song, and K.-J. Jiang, J. Nanosci. Nanotechnol. 20, 7748 (2020). CrossRef P.-C. Wang, F.-Z. Li, Y. Zhang, H.-C. Fan, X.-Q. Zhou, Y.-L. Song, and K.-J. Jiang, J. Nanosci. Nanotechnol. 20, 7748 (2020). CrossRef
19.
go back to reference K.W. Mitchell, A.L. Fahrenbruch, and R.H. Bube, J. Appl. Phys. 48, 4365 (1977). CrossRef K.W. Mitchell, A.L. Fahrenbruch, and R.H. Bube, J. Appl. Phys. 48, 4365 (1977). CrossRef
20.
go back to reference Z. Fang, X.C. Wang, H.C. Wu, and C.Z. Zhao, Int. J. Photoenergy. 2011, 297350 (2011). CrossRef Z. Fang, X.C. Wang, H.C. Wu, and C.Z. Zhao, Int. J. Photoenergy. 2011, 297350 (2011). CrossRef
21.
go back to reference S. Singh, T. Raj, H. Singh, and J. Singh, J. Nanoelectron. Optoelectron. 14, 1468 (2019). CrossRef S. Singh, T. Raj, H. Singh, and J. Singh, J. Nanoelectron. Optoelectron. 14, 1468 (2019). CrossRef
22.
go back to reference H. Matsumoto, K. Kuribayashi, H. Uda, Y. Komatsu, A. Nakano, and S. Ikegami, Sol. Cells 11, 367 (1984). CrossRef H. Matsumoto, K. Kuribayashi, H. Uda, Y. Komatsu, A. Nakano, and S. Ikegami, Sol. Cells 11, 367 (1984). CrossRef
23.
24.
go back to reference M.B. Askari, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015). CrossRef M.B. Askari, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015). CrossRef
26.
27.
28.
go back to reference A.M. Bagher, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015). CrossRef A.M. Bagher, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015). CrossRef
29.
go back to reference A.M. Ali, K.S. Rahman, L.M. Ali, M. Akhtaruzzaman, K. Sopian, S. Radiman, and N. Amin, Res. Phys. 7, 1066 (2017). A.M. Ali, K.S. Rahman, L.M. Ali, M. Akhtaruzzaman, K. Sopian, S. Radiman, and N. Amin, Res. Phys. 7, 1066 (2017).
30.
go back to reference H.T. Masood, S. Anwer, X. Wang, A. Ali, and W. Deliang, Optik, 224, 165505 (2020). CrossRef H.T. Masood, S. Anwer, X. Wang, A. Ali, and W. Deliang, Optik, 224, 165505 (2020). CrossRef
31.
go back to reference K. Shen, X. Wang, Y. Zhang, H. Zhu, Z. Chen, C. Huang, and Y. Mai, Sol. Energy, 201, 55 (2020). CrossRef K. Shen, X. Wang, Y. Zhang, H. Zhu, Z. Chen, C. Huang, and Y. Mai, Sol. Energy, 201, 55 (2020). CrossRef
32.
go back to reference I.-S. Jung, S.-H. Kang, S.-H. Lee, Y.-H. Song, J.-K. Yoon, J.-S. Park, J. Choi, and M.S. Akhtar, Sci. Adv. Mater. 11, 973 (2019). CrossRef I.-S. Jung, S.-H. Kang, S.-H. Lee, Y.-H. Song, J.-K. Yoon, J.-S. Park, J. Choi, and M.S. Akhtar, Sci. Adv. Mater. 11, 973 (2019). CrossRef
33.
go back to reference K.S. Gour, R. Parmar, R. Kumar, and V.N. Singh, J. Nanosci. Nanotechnol. 20, 3909 (2020). CrossRef K.S. Gour, R. Parmar, R. Kumar, and V.N. Singh, J. Nanosci. Nanotechnol. 20, 3909 (2020). CrossRef
34.
go back to reference Z. Fan, and Q. Lin, Conference, the international society for optics and photonics: reducing reflection losses in solar cells (2014). Z. Fan, and Q. Lin, Conference, the international society for optics and photonics: reducing reflection losses in solar cells (2014).
35.
go back to reference K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Adv. Mater. 26, 2805 (2014) CrossRef K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Adv. Mater. 26, 2805 (2014) CrossRef
37.
38.
go back to reference L.A. Dobrzański, M. Szindler, A. Drygała, and M.M. Szindler, Centr. Euro. J. Phys. 12, 666 (2014). L.A. Dobrzański, M. Szindler, A. Drygała, and M.M. Szindler, Centr. Euro. J. Phys. 12, 666 (2014).
40.
go back to reference D. A. Clugston, and P.A. Basore, in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (pp. 207–210). IEEE (1997). D. A. Clugston, and P.A. Basore, in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (pp. 207–210). IEEE (1997).
41.
go back to reference D.K. Shah, R. Wagle, A. Shrivastava, and D. Parajuli, J. Adv. Res. Dyn. Control Syst. 12, 2878 (2020). CrossRef D.K. Shah, R. Wagle, A. Shrivastava, and D. Parajuli, J. Adv. Res. Dyn. Control Syst. 12, 2878 (2020). CrossRef
42.
go back to reference L. Danos, T. Parel, T. Markvart, V. Barrioz, W.S.M. Brooks, and S.J.C. Irvine, Sol. Energy Mater. Sol. Cells. 98, 486 (2012). L. Danos, T. Parel, T. Markvart, V. Barrioz, W.S.M. Brooks, and S.J.C. Irvine, Sol. Energy Mater. Sol. Cells. 98, 486 (2012).
43.
44.
go back to reference G. Womack, P.M. Kaminski, A. Abbas, K. Isbilir, R. Gottschalg, and J.M. Walls, J. Vac. Sci. Technol. A 35, 021201 (2017). CrossRef G. Womack, P.M. Kaminski, A. Abbas, K. Isbilir, R. Gottschalg, and J.M. Walls, J. Vac. Sci. Technol. A 35, 021201 (2017). CrossRef
45.
go back to reference S. Banerjee, in Devices for Integrated Circuit (DevIC) (pp. 730–733). IEEE (2017). S. Banerjee, in Devices for Integrated Circuit (DevIC) (pp. 730–733). IEEE (2017).
46.
go back to reference J. Jung, A. Jannat, M.S., Akhtar, and O.-B. Yang, J. Nanosci. Nanotechnol. 18, 1274 (2018). CrossRef J. Jung, A. Jannat, M.S., Akhtar, and O.-B. Yang, J. Nanosci. Nanotechnol. 18, 1274 (2018). CrossRef
47.
go back to reference T.X. Zhang, L.G. Wang, J.J. Zhu, J.Y. Liu, and S.J. Guo, J. Nanoelectron. Optoelectron. 14, 227 (2019). CrossRef T.X. Zhang, L.G. Wang, J.J. Zhu, J.Y. Liu, and S.J. Guo, J. Nanoelectron. Optoelectron. 14, 227 (2019). CrossRef
48.
go back to reference S. Dogan, N. Töre, A. Karsli, E. Parlak, T. Altürk, and G.F. Serap, J. Nanoelectron. Optoelectron. 14, 8 (2019). CrossRef S. Dogan, N. Töre, A. Karsli, E. Parlak, T. Altürk, and G.F. Serap, J. Nanoelectron. Optoelectron. 14, 8 (2019). CrossRef
49.
go back to reference D.K. Shah, D. KC, M.S. Akhtar, O-B Yang, and C.Y. Kim, Appl. Sci. 1017, 6062 (2020). CrossRef D.K. Shah, D. KC, M.S. Akhtar, O-B Yang, and C.Y. Kim, Appl. Sci. 1017, 6062 (2020). CrossRef
50.
go back to reference J. Hossain, B.K. Mondal, and S.K Mostaque, Mater. Res. Express. 7, 015502 (2019). CrossRef J. Hossain, B.K. Mondal, and S.K Mostaque, Mater. Res. Express. 7, 015502 (2019). CrossRef
51.
52.
go back to reference H. Jee, J. Song, D. Moon, J. Lee, and C. Jeong, J. Nanosci. Nanotechnol. 20, 7096 (2020). CrossRef H. Jee, J. Song, D. Moon, J. Lee, and C. Jeong, J. Nanosci. Nanotechnol. 20, 7096 (2020). CrossRef
54.
go back to reference R. Wagle, R. Gaib, A. Shrivastava, and L.N. Mishra, Am. J. Eng. Res. 9, 218 (2020). R. Wagle, R. Gaib, A. Shrivastava, and L.N. Mishra, Am. J. Eng. Res. 9, 218 (2020).
55.
go back to reference S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu and T.Kita, Nat. Commun. 8, 14962 (2017). CrossRef S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu and T.Kita, Nat. Commun. 8, 14962 (2017). CrossRef
56.
57.
go back to reference E. Alarousu, A. M. El-Zohry, J. Yin, A. A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, O.M. Bakr, and O.F. Mohammed, J. Phys. Chem. Lett. 8, 4386 (2017). CrossRef E. Alarousu, A. M. El-Zohry, J. Yin, A. A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, O.M. Bakr, and O.F. Mohammed, J. Phys. Chem. Lett. 8, 4386 (2017). CrossRef
58.
go back to reference Z.Z. Bandic, P.M. Bridger, E.C. Piquette and T.C. McGill, Appl. Phys. Lett. 73, 3166 (1998). CrossRef Z.Z. Bandic, P.M. Bridger, E.C. Piquette and T.C. McGill, Appl. Phys. Lett. 73, 3166 (1998). CrossRef
59.
Metadata
Title
Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study
Authors
Devendra KC
Deb Kumar Shah
Amer M. Alanazi
M. Shaheer Akhtar
Publication date
23-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08696-5

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue