Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Impact of Flowfield on Pollutants’ Emission from a Swirl-Assisted Distributed Combustor

Authors : Joseph S. Feser, Serhat Karyeyen, Ashwani K. Gupta

Published in: Advances in IC Engines and Combustion Technology

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Colorless distributed combustion (CDC) is a novel method to enhance flame stability and thermal field uniformity, increase combustion efficiency, and reduce pollutants’ emission. CDC is achieved through the use of a carefully prepared fuel–oxidizer mixture along with reactive species. In this study, a partially premixed, swirl-assisted cylindrical combustor utilized a propane–air flame with either nitrogen or carbon dioxide gas in order to reduce the oxygen concentration of the oxidizer. OH* chemiluminescence signatures were used to determine transition to distributed combustion condition. The results showed transition to CDC at approximately 15% using N2 and 17% using CO2 dilution. Emission of NO and CO under CDC condition showed NO levels of only 2 or 1 ppm using N2 or CO2 dilution, respectively. High-frequency PIV (3 kHz) was used to determine the flow velocity structure and eddy size effects on flame stability and emissions. Increase in dilution enhanced both the radial and axial mean and fluctuating velocities under CDC that foster mixing. Additionally, the Kolmogorov length decreased with increase in dilution resulting in smaller eddy size particularly in the swirl lobe region, which enhanced turbulent dissipation that resulted in lower peak temperatures and reduced thermal NOx emission. Reduced viscosity using CO2 dilution provided a stronger effect in reducing NO as compared to N2 as the diluent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference U.S. Energy Information Administration. Annual Energy Outlook 2019 with projections to 2050. AEO 2019. Washington DC, USA: U.S. Department of Energy U.S. Energy Information Administration. Annual Energy Outlook 2019 with projections to 2050. AEO 2019. Washington DC, USA: U.S. Department of Energy
2.
go back to reference Wunning JA, Wunning JG (1997) Flameless oxidation o reduce thermal NO formation. Prog Energy Combust Sci 23:81–94CrossRef Wunning JA, Wunning JG (1997) Flameless oxidation o reduce thermal NO formation. Prog Energy Combust Sci 23:81–94CrossRef
3.
go back to reference Lammel O, Schutz H, Schmitz G, Luckerath R, Stohr M, Noll B, Aigner M, Hase M, Krebs W (2010) FLOX combustion at high power density and high flame temperature. J Eng Gas Turbines Power 132(12):121503CrossRef Lammel O, Schutz H, Schmitz G, Luckerath R, Stohr M, Noll B, Aigner M, Hase M, Krebs W (2010) FLOX combustion at high power density and high flame temperature. J Eng Gas Turbines Power 132(12):121503CrossRef
4.
go back to reference Zornek T, Monz T, Aigner M (2015) Performance analysis of the micro gas turbine turbec T100 with a new FLOX-combustion system for low calorific values. Appl Energy 159:276–284CrossRef Zornek T, Monz T, Aigner M (2015) Performance analysis of the micro gas turbine turbec T100 with a new FLOX-combustion system for low calorific values. Appl Energy 159:276–284CrossRef
5.
go back to reference Cavaliere A, de Joannon M (2004) MILD combustion. Prog Energy Combust Sci 30(4):329–366CrossRef Cavaliere A, de Joannon M (2004) MILD combustion. Prog Energy Combust Sci 30(4):329–366CrossRef
6.
go back to reference Weber R, Smart JP, vd Kamp W (2005) On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc Combust Inst 30(2):2623–2639 Weber R, Smart JP, vd Kamp W (2005) On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc Combust Inst 30(2):2623–2639
7.
go back to reference Ozdemir IB, Peters N (2001) Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp Fluids 30:683–695CrossRef Ozdemir IB, Peters N (2001) Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp Fluids 30:683–695CrossRef
8.
go back to reference Arghode VK, Gupta AK (2010) Effect of flowfield for colorless distributed combustion (CDC) for gas turbine combustion. Appl Energy 78:1631–1640CrossRef Arghode VK, Gupta AK (2010) Effect of flowfield for colorless distributed combustion (CDC) for gas turbine combustion. Appl Energy 78:1631–1640CrossRef
9.
go back to reference Khalil AEE, Gupta AK (2011) Swirling distributed combustion for clean energy conversion in gas turbine applications. Appl Energy 88:3685–3693CrossRef Khalil AEE, Gupta AK (2011) Swirling distributed combustion for clean energy conversion in gas turbine applications. Appl Energy 88:3685–3693CrossRef
10.
go back to reference Tsuji H, Gupta AK, Hasegawa T, Katsuki M, Kishimoto K, Morita M (2003) High temperature air combustion: from energy conservation to pollution reduction. CRC Press, Boca Raton Tsuji H, Gupta AK, Hasegawa T, Katsuki M, Kishimoto K, Morita M (2003) High temperature air combustion: from energy conservation to pollution reduction. CRC Press, Boca Raton
11.
go back to reference Khalil AEE, Gupta AK (2018) Fostering distributed combustion in a swirl burner using prevaporized liquid fuels. Appl Energy 211:513–522CrossRef Khalil AEE, Gupta AK (2018) Fostering distributed combustion in a swirl burner using prevaporized liquid fuels. Appl Energy 211:513–522CrossRef
12.
go back to reference Correa SM (1992) A review of NOx formation under gas turbine combustion conditions. Combust Sci Technol 87:329–362CrossRef Correa SM (1992) A review of NOx formation under gas turbine combustion conditions. Combust Sci Technol 87:329–362CrossRef
13.
go back to reference Khalil AEE, Gupta AK (2017) Acoustic and heat release signatures for swirl assisted distributed combustion. Appl Energy 193:125–138 CrossRef Khalil AEE, Gupta AK (2017) Acoustic and heat release signatures for swirl assisted distributed combustion. Appl Energy 193:125–138 CrossRef
14.
go back to reference Khalil AEE, Gupta AK (2016) Fuel property effects on distributed combustion. Fuel 171:116–124CrossRef Khalil AEE, Gupta AK (2016) Fuel property effects on distributed combustion. Fuel 171:116–124CrossRef
15.
go back to reference Khalil AEE, Gupta AK (2015) Impact of internal entrainment on high intensity distributed combustion. Appl Energy 156:241–250CrossRef Khalil AEE, Gupta AK (2015) Impact of internal entrainment on high intensity distributed combustion. Appl Energy 156:241–250CrossRef
16.
go back to reference Khalil AEE, Gupta AK (2015) Thermal field investigation under distributed combustion conditions. Appl Energy 160:477–488CrossRef Khalil AEE, Gupta AK (2015) Thermal field investigation under distributed combustion conditions. Appl Energy 160:477–488CrossRef
17.
go back to reference Khalil AEE, Gupta AK (2017) Towards colorless distributed combustion regime. Fuel 195:113–122CrossRef Khalil AEE, Gupta AK (2017) Towards colorless distributed combustion regime. Fuel 195:113–122CrossRef
18.
go back to reference Khalil AEE, Gupta AK (2016) On the flame-flow interaction under distributed combustion conditions. Fuel 182:17–26CrossRef Khalil AEE, Gupta AK (2016) On the flame-flow interaction under distributed combustion conditions. Fuel 182:17–26CrossRef
19.
go back to reference Kim HS, Arghode VK, Linck MB, Gupta AK (2009) Hydrogen addition effects in a confined swirl-stabilized methane-air flame. Int J Hydrogen Energy 34(2):1054–1062CrossRef Kim HS, Arghode VK, Linck MB, Gupta AK (2009) Hydrogen addition effects in a confined swirl-stabilized methane-air flame. Int J Hydrogen Energy 34(2):1054–1062CrossRef
20.
go back to reference Herning F, Zipperer L (1936) Calculation of the viscosity of technical gas mixtures from the viscosity of individual gases. Gas-und Wasserfach 79:69–73 Herning F, Zipperer L (1936) Calculation of the viscosity of technical gas mixtures from the viscosity of individual gases. Gas-und Wasserfach 79:69–73
Metadata
Title
Impact of Flowfield on Pollutants’ Emission from a Swirl-Assisted Distributed Combustor
Authors
Joseph S. Feser
Serhat Karyeyen
Ashwani K. Gupta
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5996-9_1

Premium Partner