Skip to main content
Top
Published in: Experiments in Fluids 6/2017

01-06-2017 | Research Article

Impact pressure and void fraction due to plunging breaking wave impact on a 2D TLP structure

Authors: Wei-Liang Chuang, Kuang-An Chang, Richard Mercier

Published in: Experiments in Fluids | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Violent impacts due to the plunging breaking wave impingement on a 2D tension-leg platform (TLP) structure were experimentally investigated in a laboratory. Simultaneous pressure, void fraction, fluid velocity, and structure motion measurements were performed on the multiphase, turbulent flow. The maximum mean impact pressure is 2.3ρC 2 with C being the wave phase speed. The pressure maximum and its rise time are negatively correlated, and the rise time for impulsive-type impacts is less than 15 ms or 0.18H/C with H being the wave height. Different approaches show that impact coefficients vary from 0.6 to 9.7, including relating the impact pressure maxima to the wave phase speed, local velocity, and void fraction. By modeling the plunging breaking wave impact as a filling flow, a pressure–aeration relationship was investigated and compared with the approximate solution derived by Peregrine and Thais (J Fluid Mech 325:377–397, 1996). The measured data show that a high aeration level tends to reduce the impact pressure maximum so the cushioning effect is significant for breaking wave impacts on a moving vertical wall.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ariyarathne K, Chang K-A, Mercier R (2012) Green water impact pressure on a three-dimensional model structure. Exp Fluids 53:1879–1894CrossRef Ariyarathne K, Chang K-A, Mercier R (2012) Green water impact pressure on a three-dimensional model structure. Exp Fluids 53:1879–1894CrossRef
go back to reference Azarmsa SA, Yasuda T, Mutsuda H (1997) Cause and characteristics of impact pressure exerted by spilling and plunging breakers on a vertical wall. Coast Eng 1996:2442–2455 Azarmsa SA, Yasuda T, Mutsuda H (1997) Cause and characteristics of impact pressure exerted by spilling and plunging breakers on a vertical wall. Coast Eng 1996:2442–2455
go back to reference Bagnold RA (1939) Interim report on wave-pressure research. Inst Civil Eng 12:201–226 Bagnold RA (1939) Interim report on wave-pressure research. Inst Civil Eng 12:201–226
go back to reference Blackmore PA, Hewson PJ (1984) Experiments on full-scale wave impact pressures. Coast Eng 8:331–346CrossRef Blackmore PA, Hewson PJ (1984) Experiments on full-scale wave impact pressures. Coast Eng 8:331–346CrossRef
go back to reference Blenkinsopp CE, Chaplin JR (2007) Void fraction measurements in breaking waves. P R Soc A 463:3151–3170CrossRef Blenkinsopp CE, Chaplin JR (2007) Void fraction measurements in breaking waves. P R Soc A 463:3151–3170CrossRef
go back to reference Bredmose H, Peregrine DH, Bullock GN (2009) Violent breaking wave impacts. Part 2: modelling the effect of air. J Fluid Mech 641:389–430MathSciNetCrossRefMATH Bredmose H, Peregrine DH, Bullock GN (2009) Violent breaking wave impacts. Part 2: modelling the effect of air. J Fluid Mech 641:389–430MathSciNetCrossRefMATH
go back to reference Bredmose H, Bullock GN, Hogg AJ (2015) Violent breaking wave impacts. Part 3. Effects of scale and aeration. J Fluid Mech 765:82–113MathSciNetCrossRef Bredmose H, Bullock GN, Hogg AJ (2015) Violent breaking wave impacts. Part 3. Effects of scale and aeration. J Fluid Mech 765:82–113MathSciNetCrossRef
go back to reference Buchner B, Bunnik T (2007) Extreme wave effects on deepwater floating structures Offshore Technology Conference. Offshore Technology Conference, Houston, Texas, USA Buchner B, Bunnik T (2007) Extreme wave effects on deepwater floating structures Offshore Technology Conference. Offshore Technology Conference, Houston, Texas, USA
go back to reference Bullock GN, Crawford AR, Hewson PJ, Walkden MJA, Bird PAD (2001) The influence of air and scale on wave impact pressures. Coast Eng 42:291–312CrossRef Bullock GN, Crawford AR, Hewson PJ, Walkden MJA, Bird PAD (2001) The influence of air and scale on wave impact pressures. Coast Eng 42:291–312CrossRef
go back to reference Bullock GN, Obhrai C, Peregrine DH, Bredmose H (2007) Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls. Coast Eng 54:602–617CrossRef Bullock GN, Obhrai C, Peregrine DH, Bredmose H (2007) Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls. Coast Eng 54:602–617CrossRef
go back to reference Chan E-S, Cheong H-F, Tan B-C (1995) Laboratory study of plunging wave impacts on vertical cylinders. Coast Eng 25:87–107CrossRef Chan E-S, Cheong H-F, Tan B-C (1995) Laboratory study of plunging wave impacts on vertical cylinders. Coast Eng 25:87–107CrossRef
go back to reference Chan ES, Melville WK (1988) Deep-water plunging wave pressures on a vertical plane wall. Proc R Soc Lond A 417:95–131CrossRef Chan ES, Melville WK (1988) Deep-water plunging wave pressures on a vertical plane wall. Proc R Soc Lond A 417:95–131CrossRef
go back to reference Chang K-A, Lim H-J, Su C-B (2003) Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Rev Sci Instrum 74:3559–3565CrossRef Chang K-A, Lim H-J, Su C-B (2003) Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Rev Sci Instrum 74:3559–3565CrossRef
go back to reference Chang K-A, Ariyarathne K, Mercier R (2011) Three-dimensional green water velocity on a model structure. Exp Fluids 51:327–345CrossRef Chang K-A, Ariyarathne K, Mercier R (2011) Three-dimensional green water velocity on a model structure. Exp Fluids 51:327–345CrossRef
go back to reference Chuang W-L, Chang K-A, Mercier R (2015) Green water velocity due to breaking wave impingement on a tension leg platform. Exp Fluids 56:1–21CrossRef Chuang W-L, Chang K-A, Mercier R (2015) Green water velocity due to breaking wave impingement on a tension leg platform. Exp Fluids 56:1–21CrossRef
go back to reference Cox D, Shin S (2003) Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. J Eng Mech 129:1197–1205CrossRef Cox D, Shin S (2003) Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. J Eng Mech 129:1197–1205CrossRef
go back to reference Cuomo G, Allsop W, Takahashi S (2010a) Scaling wave impact pressures on vertical walls. Coast Eng 57:604–609CrossRef Cuomo G, Allsop W, Takahashi S (2010a) Scaling wave impact pressures on vertical walls. Coast Eng 57:604–609CrossRef
go back to reference Cuomo G, Allsop W, Bruce T, Pearson J (2010b) Breaking wave loads at vertical seawalls and breakwaters. Coast Eng 57:424–439CrossRef Cuomo G, Allsop W, Bruce T, Pearson J (2010b) Breaking wave loads at vertical seawalls and breakwaters. Coast Eng 57:424–439CrossRef
go back to reference Hattori M, Arami A, Yui T (1994) Wave impact pressure on vertical walls under breaking waves of various types. Coast Eng 22:79–114CrossRef Hattori M, Arami A, Yui T (1994) Wave impact pressure on vertical walls under breaking waves of various types. Coast Eng 22:79–114CrossRef
go back to reference Hull P, Muller G (2002) An investigation of breaker heights, shapes and pressures. Ocean Eng 29:59–79CrossRef Hull P, Muller G (2002) An investigation of breaker heights, shapes and pressures. Ocean Eng 29:59–79CrossRef
go back to reference Johannessen TB, Haver S, Bunnik T, Buchner B (2006) Extreme wave effects on deep water TLPs—Lessons learned from the Snorre A model tests DOT Conference. Houston, Texas, USA Johannessen TB, Haver S, Bunnik T, Buchner B (2006) Extreme wave effects on deep water TLPs—Lessons learned from the Snorre A model tests DOT Conference. Houston, Texas, USA
go back to reference Kirkgoz MS (1990) An experimental investigation of a vertical wall response to breaking wave impact. Ocean Eng 17:379–391CrossRef Kirkgoz MS (1990) An experimental investigation of a vertical wall response to breaking wave impact. Ocean Eng 17:379–391CrossRef
go back to reference Kisacik D, Troch P, Van Bogaert P (2012) Experimental study of violent wave impact on a vertical structure with an overhanging horizontal cantilever slab. Ocean Eng 49:1–15CrossRef Kisacik D, Troch P, Van Bogaert P (2012) Experimental study of violent wave impact on a vertical structure with an overhanging horizontal cantilever slab. Ocean Eng 49:1–15CrossRef
go back to reference Kisacik D, Troch P, Van Bogaert P, Caspeele R (2014) Investigation of uplift impact forces on a vertical wall with an overhanging horizontal cantilever slab. Coast Eng 90:12–22CrossRef Kisacik D, Troch P, Van Bogaert P, Caspeele R (2014) Investigation of uplift impact forces on a vertical wall with an overhanging horizontal cantilever slab. Coast Eng 90:12–22CrossRef
go back to reference Lim HJ, Chang KA, Su CB, Chen CY (2008) Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer. Rev Sci Instrum 79:125105CrossRef Lim HJ, Chang KA, Su CB, Chen CY (2008) Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer. Rev Sci Instrum 79:125105CrossRef
go back to reference Lim H-J, Chang K-A, Huang Z-C, Na B (2015) Experimental study on plunging breaking waves in deep water. J Geophys Res Oceans 120:2007–2049CrossRef Lim H-J, Chang K-A, Huang Z-C, Na B (2015) Experimental study on plunging breaking waves in deep water. J Geophys Res Oceans 120:2007–2049CrossRef
go back to reference Lin C, Hsieh S-C, Kuo K-J, Chang K-A (2008) Periodic oscillation caused by a flow over a vertical drop pool. J Hydraul Eng ASCE 134:948–960CrossRef Lin C, Hsieh S-C, Kuo K-J, Chang K-A (2008) Periodic oscillation caused by a flow over a vertical drop pool. J Hydraul Eng ASCE 134:948–960CrossRef
go back to reference Lin C, Hsieh S-C, Lin I-J, Chang K-A, Raikar RV (2012) Flow property and self-similarity in steady hydraulic jumps. Exp Fluids 53:1591–1616CrossRef Lin C, Hsieh S-C, Lin I-J, Chang K-A, Raikar RV (2012) Flow property and self-similarity in steady hydraulic jumps. Exp Fluids 53:1591–1616CrossRef
go back to reference Lugni C, Brocchini M, Faltinsen OM (2006) Wave impact loads: the role of the flip-through. Phys Fluids 18:122101CrossRefMATH Lugni C, Brocchini M, Faltinsen OM (2006) Wave impact loads: the role of the flip-through. Phys Fluids 18:122101CrossRefMATH
go back to reference Lugni C, Miozzi M, Brocchini M, Faltinsen OM (2010a) Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field. Phys Fluids 22:056101CrossRefMATH Lugni C, Miozzi M, Brocchini M, Faltinsen OM (2010a) Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field. Phys Fluids 22:056101CrossRefMATH
go back to reference Lugni C, Brocchini M, Faltinsen OM (2010b) Evolution of the air cavity during a depressurized wave impact. II. The dynamic field. Phys Fluids 22:056102CrossRefMATH Lugni C, Brocchini M, Faltinsen OM (2010b) Evolution of the air cavity during a depressurized wave impact. II. The dynamic field. Phys Fluids 22:056102CrossRefMATH
go back to reference Ma ZH, Causon DM, Qian L, Mingham CG, Mai T, Greaves D, Raby A (2016) Pure and aerated water entry of a flat plate. Phys Fluids 28:016104CrossRef Ma ZH, Causon DM, Qian L, Mingham CG, Mai T, Greaves D, Raby A (2016) Pure and aerated water entry of a flat plate. Phys Fluids 28:016104CrossRef
go back to reference Na B, Chang K-A, Huang Z-C, Lim H-J (2016) Turbulent flow field and air entrainment in laboratory plunging breaking waves. J Geophys Res Oceans 121:2980–3009CrossRef Na B, Chang K-A, Huang Z-C, Lim H-J (2016) Turbulent flow field and air entrainment in laboratory plunging breaking waves. J Geophys Res Oceans 121:2980–3009CrossRef
go back to reference Ochi MK, Tsai CH (1984) Prediction of impact pressure induced by breaking waves on vertical cylinders in random seas. Appl Ocean Res 6:157–165CrossRef Ochi MK, Tsai CH (1984) Prediction of impact pressure induced by breaking waves on vertical cylinders in random seas. Appl Ocean Res 6:157–165CrossRef
go back to reference Oumeraci H, Kortenhaus A, Allsop W et al (2001) Probablilistic design tools for vertical breakwaters. Balkema Publishers, New York Oumeraci H, Kortenhaus A, Allsop W et al (2001) Probablilistic design tools for vertical breakwaters. Balkema Publishers, New York
go back to reference Pedrozo-Acuña A, de Alegría-Arzaburu AR, Torres-Freyermuth A, Mendoza E, Silva R (2011) Laboratory investigation of pressure gradients induced by plunging breakers. Coast Eng 58:722–738CrossRef Pedrozo-Acuña A, de Alegría-Arzaburu AR, Torres-Freyermuth A, Mendoza E, Silva R (2011) Laboratory investigation of pressure gradients induced by plunging breakers. Coast Eng 58:722–738CrossRef
go back to reference Peregrine DH, Thais L (1996) The effect of entrained air in violent water wave impacts. J Fluid Mech 325:377–397CrossRefMATH Peregrine DH, Thais L (1996) The effect of entrained air in violent water wave impacts. J Fluid Mech 325:377–397CrossRefMATH
go back to reference Perlin M, He JH, Bernal LP (1996) An experimental study of deep water plunging breakers. Phys Fluids 8:2365–2374CrossRef Perlin M, He JH, Bernal LP (1996) An experimental study of deep water plunging breakers. Phys Fluids 8:2365–2374CrossRef
go back to reference Rivillas-Ospina G, Pedrozo-Acuna A, Silva R, Torres-Freyermuth A, Gutierrez C (2012) Estimation of the velocity field induced by plunging breakers in the surf and swash zones. Exp Fluids 52:53–68CrossRef Rivillas-Ospina G, Pedrozo-Acuna A, Silva R, Torres-Freyermuth A, Gutierrez C (2012) Estimation of the velocity field induced by plunging breakers in the surf and swash zones. Exp Fluids 52:53–68CrossRef
go back to reference Rudman M, Cleary PW (2013) Rogue wave impact on a tension leg platform: the effect of wave incidence angle and mooring line tension. Ocean Eng 61:123–138CrossRef Rudman M, Cleary PW (2013) Rogue wave impact on a tension leg platform: the effect of wave incidence angle and mooring line tension. Ocean Eng 61:123–138CrossRef
go back to reference Ryu Y, Chang K-A (2008) Green water void fraction due to breaking wave impinging and overtopping. Exp Fluids 45:883–898CrossRef Ryu Y, Chang K-A (2008) Green water void fraction due to breaking wave impinging and overtopping. Exp Fluids 45:883–898CrossRef
go back to reference Ryu Y, Chang K-A, Lim HJ (2005) Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas Sci Technol 16:1945–1953CrossRef Ryu Y, Chang K-A, Lim HJ (2005) Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas Sci Technol 16:1945–1953CrossRef
go back to reference Ryu Y, Chang K-A, Mercier R (2007a) Application of dam-break flow to green water prediction. Appl Ocean Res 29:128–136CrossRef Ryu Y, Chang K-A, Mercier R (2007a) Application of dam-break flow to green water prediction. Appl Ocean Res 29:128–136CrossRef
go back to reference Ryu YG, Chang K-A, Mercier R (2007b) Runup and green water velocities due to breaking wave impinging and overtopping. Exp Fluids 43:555–567CrossRef Ryu YG, Chang K-A, Mercier R (2007b) Runup and green water velocities due to breaking wave impinging and overtopping. Exp Fluids 43:555–567CrossRef
go back to reference Song YK, Chang K-A, Ryu Y, Kwon SH (2013) Experimental study on flow kinematics and impact pressure in liquid sloshing. Exp Fluids 54:1–20CrossRef Song YK, Chang K-A, Ryu Y, Kwon SH (2013) Experimental study on flow kinematics and impact pressure in liquid sloshing. Exp Fluids 54:1–20CrossRef
go back to reference Song YK, Chang K-A, Ariyarathne K, Mercier R (2015) Surface velocity and impact pressure of green water flow on a fixed model structure in a large wave basin. Ocean Eng 104:40–51CrossRef Song YK, Chang K-A, Ariyarathne K, Mercier R (2015) Surface velocity and impact pressure of green water flow on a fixed model structure in a large wave basin. Ocean Eng 104:40–51CrossRef
go back to reference Veldman AEP, Luppes R, Bunnik T et al (2011) Extreme wave impact on offshore platforms and coastal constructions ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, The Netherlands Veldman AEP, Luppes R, Bunnik T et al (2011) Extreme wave impact on offshore platforms and coastal constructions ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, The Netherlands
go back to reference Wang DW, Mitchell DA, Teague WJ, Jarosz E, Hulbert MS (2005) Extreme waves under Hurricane Ivan. Science 309:896CrossRef Wang DW, Mitchell DA, Teague WJ, Jarosz E, Hulbert MS (2005) Extreme waves under Hurricane Ivan. Science 309:896CrossRef
go back to reference Weggel JR, Maxwell HC (1970) Numerical model for wave pressure distributions. J Waterw Harb Coast Eng Div 96:623–642 Weggel JR, Maxwell HC (1970) Numerical model for wave pressure distributions. J Waterw Harb Coast Eng Div 96:623–642
go back to reference Wood DJ, Peregrine DH, Bruce T (2000) Wave impact on a wall using pressure-impulse theory. I: trapped air. J Waterw Port Coast Ocean Eng 126:182–190CrossRef Wood DJ, Peregrine DH, Bruce T (2000) Wave impact on a wall using pressure-impulse theory. I: trapped air. J Waterw Port Coast Ocean Eng 126:182–190CrossRef
go back to reference Wuebbles DJ, Kunkel K, Wehner M, Zobel Z (2014) Severe weather in United States under a changing climate. EOS Trans Am Geophys Union 95:149–150CrossRef Wuebbles DJ, Kunkel K, Wehner M, Zobel Z (2014) Severe weather in United States under a changing climate. EOS Trans Am Geophys Union 95:149–150CrossRef
go back to reference Xu L, Barltrop N (2008) Bow impact loading on FPSOs 2—theoretical investigation. Ocean Eng 35:1158–1165CrossRef Xu L, Barltrop N (2008) Bow impact loading on FPSOs 2—theoretical investigation. Ocean Eng 35:1158–1165CrossRef
go back to reference Xu L, Barltrop N, Okan B (2008) Bow impact loading on FPSOs 1—experimental investigation. Ocean Eng 35:1148–1157CrossRef Xu L, Barltrop N, Okan B (2008) Bow impact loading on FPSOs 1—experimental investigation. Ocean Eng 35:1148–1157CrossRef
go back to reference Zhou D, Chan ES, Melville WK (1991) Wave impact pressures on vertical cylinders. Appl Ocean Res 13:220–234CrossRef Zhou D, Chan ES, Melville WK (1991) Wave impact pressures on vertical cylinders. Appl Ocean Res 13:220–234CrossRef
Metadata
Title
Impact pressure and void fraction due to plunging breaking wave impact on a 2D TLP structure
Authors
Wei-Liang Chuang
Kuang-An Chang
Richard Mercier
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 6/2017
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2356-4

Other articles of this Issue 6/2017

Experiments in Fluids 6/2017 Go to the issue

Premium Partners