Skip to main content
Top

2021 | OriginalPaper | Chapter

Impacts of E-Fuels on Injection, Combustion and Emissions in a Large Diesel Engine

Authors : Benjamin Stengel, Fabian Pinkert, Erwin Swiderski, Martin Reißig, Bert Buchholz

Published in: Heavy-Duty-, On- und Off-Highway-Motoren 2020

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The reduction of greenhouse gases in the transport sector is fundamental for reaching the European climate goals. Shipping is responsible for about 2-3 percent of the global CO2 emissions, depending on the world trade with an increasing trend. Hence, the International Maritime Organization (IMO) is forcing an emission reduction until year 2050 of at least 50% based on emissions from year 2008.One solution to this problem could be the use of CO2-neutral fuels in conventional internal combustion engines (ICE). Especially synthetic fuels based on hydrogen from renewable energy and carbon dioxide are attractive for a use in ICEs due to their unlimited availability and customizable properties. In the framework of the public founded research project “ISystem4EFuel” such “e-fuels” were tested with respect to their usability in large ship engines at Rostock University and FVTR GmbH.Two promising e-fuels were chosen and investigated as blend components with reference EN 590 diesel in injection chamber and single-cylinder engine tests: oxymethylenether (OME) and paraffinic diesel (HVO). A prototype injector from Woodward L’Orange GmbH that is able to measure control chamber pressure was used to get additional information about fuel impacts on needle dynamic.Results showed drop-in quality of HVO-blends with negligible impact on injection control and positive effects in terms of decreased ignition delay and reduced soot emission. OME-blends were significantly affecting the injection control and the needle dynamic due to their lower heating values. OME-blends showed superior soot emission behavior at slightly increased NOx emissions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Metadata
Title
Impacts of E-Fuels on Injection, Combustion and Emissions in a Large Diesel Engine
Authors
Benjamin Stengel
Fabian Pinkert
Erwin Swiderski
Martin Reißig
Bert Buchholz
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-34362-0_14