Skip to main content
Top

2018 | OriginalPaper | Chapter

Impedance Control in the Rehabilitation Robotics

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physical interactions between patients and therapists during rehabilitation have served as motivation for the design of rehabilitation robots, yet there is a lack in fundamental understanding of the principles governing such human-human interactions. Review of the literature posed important open questions regarding sensorimotor interaction during human-human interactions that could facilitate the design of human-robot interactions and haptic interfaces for rehabilitation. The goal is to use the leading principles of the human-human interaction in order to define a way in which people could be in contact with robots in a more intuitive and biologically inspired way. The proposed hybrid impedance control solves the robot–environment contact problem and offers a possible solution for the rehabilitation robot interaction problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, 1–13 (2012)CrossRef Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, 1–13 (2012)CrossRef
2.
go back to reference Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: “Measuring Human Trainers” skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the IEEE Conference on Rehabilitation Robotics, pp. 231–234 (2005) Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: “Measuring Human Trainers” skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the IEEE Conference on Rehabilitation Robotics, pp. 231–234 (2005)
3.
go back to reference Ikeura, R., Morita, A., Mizutani, K.: Variable-damping characteristics in carrying an object by two humans. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 130–134 (1997) Ikeura, R., Morita, A., Mizutani, K.: Variable-damping characteristics in carrying an object by two humans. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 130–134 (1997)
6.
go back to reference Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef
7.
go back to reference Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 11, 111 (2014)CrossRef Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 11, 111 (2014)CrossRef
8.
go back to reference Romer, G.R.B.E., Stuyt, H.J.A., Peters, A.: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 1, 201–204 (2005) Romer, G.R.B.E., Stuyt, H.J.A., Peters, A.: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 1, 201–204 (2005)
9.
go back to reference Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012)CrossRef Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012)CrossRef
15.
go back to reference Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R.: Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1128–1137 (2014)CrossRef Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R.: Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1128–1137 (2014)CrossRef
16.
go back to reference Alamdari, A., Krovi, V.: Robotic physical exercise and system. Biomed. Eng. Lett. 6(1–9), 9 (2016) Alamdari, A., Krovi, V.: Robotic physical exercise and system. Biomed. Eng. Lett. 6(1–9), 9 (2016)
17.
go back to reference (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. In: Conference Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 1–10 (2015) (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. In: Conference Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 1–10 (2015)
18.
go back to reference Li, J., Zheng, R., Zhang, Y., Yao, J.: iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf. Proc. IEEE Rehabil. Robot. 1, 1–6 (2011) Li, J., Zheng, R., Zhang, Y., Yao, J.: iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf. Proc. IEEE Rehabil. Robot. 1, 1–6 (2011)
19.
go back to reference Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006) Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006)
20.
go back to reference Huang, F.C., Patton, J.L., Mussa-Ivaldi, F.A.: Negative viscosity can enhance learning of inertial dynamics. Conf. Proc. IEEE Rehabil. Robot. 1, 474–479 (2009) Huang, F.C., Patton, J.L., Mussa-Ivaldi, F.A.: Negative viscosity can enhance learning of inertial dynamics. Conf. Proc. IEEE Rehabil. Robot. 1, 474–479 (2009)
22.
go back to reference Jung, H., Han, J., Kim, C.Y., Chun, K.J., Jung, D., Kim, J.S., Lim, D.: Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed. Eng. Lett. 5(2), 92–97 (2015)CrossRef Jung, H., Han, J., Kim, C.Y., Chun, K.J., Jung, D., Kim, J.S., Lim, D.: Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed. Eng. Lett. 5(2), 92–97 (2015)CrossRef
23.
go back to reference Biswas, D., Cranny, A., Rahim, A.F., Gupta, N., Maharatna, K., Harris, N.R., Ortmann, S.: On the data analysis for classification of elementary upper limb movements. Biomed. Eng. Lett. 4(4), 403–413 (2014)CrossRef Biswas, D., Cranny, A., Rahim, A.F., Gupta, N., Maharatna, K., Harris, N.R., Ortmann, S.: On the data analysis for classification of elementary upper limb movements. Biomed. Eng. Lett. 4(4), 403–413 (2014)CrossRef
24.
go back to reference Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 5(2), 98–108 (2015)CrossRef Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 5(2), 98–108 (2015)CrossRef
25.
go back to reference Jensen, U., Leutheuser, H., Hofmann, S., Schuepferling, B., Suttner, G., Seiler, K., Kornhuber, J., Eskofier, B.M.: A wearable real-time activity tracker. Biomed. Eng. Lett. 5(2), 147–157 (2015)CrossRef Jensen, U., Leutheuser, H., Hofmann, S., Schuepferling, B., Suttner, G., Seiler, K., Kornhuber, J., Eskofier, B.M.: A wearable real-time activity tracker. Biomed. Eng. Lett. 5(2), 147–157 (2015)CrossRef
26.
go back to reference Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 4, 1–13 (2015) Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 4, 1–13 (2015)
27.
go back to reference Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2016)CrossRef Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2016)CrossRef
28.
go back to reference Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., Spungen, A.M.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)CrossRef Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., Spungen, A.M.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)CrossRef
29.
go back to reference Kozlowski, A.J., Bryce, T.N., Dijkers, M.P.: Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Inj. Rehabil. 21(2), 110–121 (2015)CrossRef Kozlowski, A.J., Bryce, T.N., Dijkers, M.P.: Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Inj. Rehabil. 21(2), 110–121 (2015)CrossRef
30.
go back to reference Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 21(2), 93–99 (2015)CrossRef Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 21(2), 93–99 (2015)CrossRef
31.
go back to reference Waldron, K., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 9–33. Springer, Berlin, Heidelberg (2008)CrossRef Waldron, K., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 9–33. Springer, Berlin, Heidelberg (2008)CrossRef
32.
go back to reference Siciliano, B., Villani, L.: Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science. Springer US (1999) Siciliano, B., Villani, L.: Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science. Springer US (1999)
33.
go back to reference Villani, L., de Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–187. Springer (2008) Villani, L., de Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–187. Springer (2008)
34.
go back to reference Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985)CrossRefMATH Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985)CrossRefMATH
35.
go back to reference Salisbury, J.K.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 95–100 (1980) Salisbury, J.K.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 95–100 (1980)
36.
go back to reference Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)CrossRef Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)CrossRef
37.
go back to reference de Schutter, J., Van Brussel, H.: Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef de Schutter, J., Van Brussel, H.: Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)CrossRef
38.
go back to reference Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robot. Autom. 9(4), 361–373 (1993)CrossRef Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robot. Autom. 9(4), 361–373 (1993)CrossRef
39.
go back to reference Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 220–226 (2000) Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 220–226 (2000)
40.
go back to reference Brogliato, B.: Feedback control. In: Nonsmooth Mechanics, Communications and Control Engineering, pp. 397–461. Springer, London (1999) Brogliato, B.: Feedback control. In: Nonsmooth Mechanics, Communications and Control Engineering, pp. 397–461. Springer, London (1999)
43.
go back to reference Urbanek, H., Albu-Schaffer, A., Van Der Smagt, P.: Learning from demonstration: repetitive movements for autonomous service robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3495–3500 (2004) Urbanek, H., Albu-Schaffer, A., Van Der Smagt, P.: Learning from demonstration: repetitive movements for autonomous service robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3495–3500 (2004)
45.
go back to reference Karayiannidis, Y., Doulgeri, Z.: Robot contact tasks in the presence of control target distortions. Robot. Auton. Syst. 58(5), 596–606 (2010)CrossRef Karayiannidis, Y., Doulgeri, Z.: Robot contact tasks in the presence of control target distortions. Robot. Auton. Syst. 58(5), 596–606 (2010)CrossRef
46.
go back to reference Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRef Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRef
47.
go back to reference Caccavale, F., Uchiyama, M.: Cooperative manipulators. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 701–718. Springer, Berlin, Heidelberg (2008)CrossRef Caccavale, F., Uchiyama, M.: Cooperative manipulators. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 701–718. Springer, Berlin, Heidelberg (2008)CrossRef
48.
go back to reference Uchiyama, M.: Chapter 1 Multi-arm robot systems: A survey. In: Chiacchio, Pasquale, Chiaverini, Stefano (eds.) Complex Robotic Systems. Lecture Notes in Control and Information Sciences, vol. 233, pp. 1–31. Springer, Berlin Heidelberg (1998)CrossRef Uchiyama, M.: Chapter 1 Multi-arm robot systems: A survey. In: Chiacchio, Pasquale, Chiaverini, Stefano (eds.) Complex Robotic Systems. Lecture Notes in Control and Information Sciences, vol. 233, pp. 1–31. Springer, Berlin Heidelberg (1998)CrossRef
49.
go back to reference Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRef Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRef
50.
go back to reference Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010) Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010)
52.
go back to reference Uchiyama, M., Dauchez, P.: Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Adv. Robot. 7(4), 361–383 (1992)CrossRef Uchiyama, M., Dauchez, P.: Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Adv. Robot. 7(4), 361–383 (1992)CrossRef
53.
go back to reference Koivo, A.J., Unseren, M.A.: Reduced order model and decoupled control architecture for two manipulators holding a rigid object. J. Dyn. Syst. Meas. Control 113(4), 646–654 (1991)CrossRefMATH Koivo, A.J., Unseren, M.A.: Reduced order model and decoupled control architecture for two manipulators holding a rigid object. J. Dyn. Syst. Meas. Control 113(4), 646–654 (1991)CrossRefMATH
54.
go back to reference Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)CrossRef Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)CrossRef
55.
go back to reference Caccavale, F., Villani, L.: Impedance control of cooperative manipulators. Mach. Intell. Robot. Control 2, 51–57 (2000) Caccavale, F., Villani, L.: Impedance control of cooperative manipulators. Mach. Intell. Robot. Control 2, 51–57 (2000)
Metadata
Title
Impedance Control in the Rehabilitation Robotics
Author
Zlata Jelačić
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71321-2_85

Premium Partner