Skip to main content
Top

2008 | OriginalPaper | Chapter

32. Implantable Biomedical Devices and Biologically Inspired Materials

Author : Hugh Bruck, Dr.

Published in: Springer Handbook of Experimental Solid Mechanics

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Experimental mechanics is playing an important role in the development of new implantable biomedical devices through an advanced understanding of the microstructure/property relationship for biocompatible materials and their effect on the structure/performance of these devices. A similar understanding is also being applied to the development of new biologically inspired materials and systems that are analogs of biological counterparts. This chapter attempts to elucidate on the synergy between the research and development activities in these two areas through the application of experimental mechanics. Fundamental information is provided on the motivation for the science and technology required to develop these areas, and the associated contributions being made by the experimental mechanics community. The challenges that are encountered when investigating the unique mechanical behavior and properties of devices, materials, and systems are also presented. Specific examples are provided to illustrate these issues, and the application of experimental mechanics techniques, such as Photoelasticity, Digital Image Correlation, and Nanoindentation, to understand and characterize them at multiple length scales.
It is the purpose of this chapter to describe the application of experimental mechanics in understanding the mechanics of implantable biomedical devices, as well as biologically inspired materials and systems. In particular, the experimental techniques used to develop this understanding, and the fundamental scientific and technical insight that has been obtained into various aspects of processing/microstructure/property/structure/ performance relationships in these devices, materials, and systems will be reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
32.1.
go back to reference H.A. Bruck, J.J. Evans, M. Peterson: The role of mechanics in biological and biologically inspired Materials, Exp. Mech. 42, 361–371 (2002) H.A. Bruck, J.J. Evans, M. Peterson: The role of mechanics in biological and biologically inspired Materials, Exp. Mech. 42, 361–371 (2002)
32.2.
go back to reference I. Amato: Stuff: The Materials the World is Made of (Basic Books, New York 1997) I. Amato: Stuff: The Materials the World is Made of (Basic Books, New York 1997)
32.3.
go back to reference S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001) S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001)
32.4.
go back to reference C. Dry: Procedures developed for self-repair of polymer matrix composite materials, Compos. Struct. 35, 263–269 (1996) C. Dry: Procedures developed for self-repair of polymer matrix composite materials, Compos. Struct. 35, 263–269 (1996)
32.5.
go back to reference H.R. Piehler: The future of medicine: biomaterials, MRS Bull. 25, 67–69 (2000) H.R. Piehler: The future of medicine: biomaterials, MRS Bull. 25, 67–69 (2000)
32.6.
go back to reference S. Karmat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging, Acta Mater. 52, 2395–2406 (2004) S. Karmat, H. Kessler, R. Ballarini, M. Nassirou, A.H. Heuer: Fracture mechanisms of the Strombus gigas conch shell: II-micromechanics analyses of multiple cracking and large-scale crack bridging, Acta Mater. 52, 2395–2406 (2004)
32.7.
go back to reference J.L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S.J. Eppell, M. Tabib-Azar: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces, Mater. Sci. Eng. C 27, 450–468 (2007) J.L. Katz, A. Misra, P. Spencer, Y. Wang, S. Bumrerraj, T. Nomura, S.J. Eppell, M. Tabib-Azar: Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces, Mater. Sci. Eng. C 27, 450–468 (2007)
32.8.
go back to reference J.F.V. Vincent: Structural Biomaterials (Princeton Univ. Press, Princeton 1991) J.F.V. Vincent: Structural Biomaterials (Princeton Univ. Press, Princeton 1991)
32.9.
go back to reference H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at the nanoscale: lessons from nature, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 5597–2600 H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at the nanoscale: lessons from nature, Proc. Natl. Acad. Sci., Vol. 100 (2003) pp. 5597–2600
32.10.
go back to reference E. Baer, A. Hiltner, A.R. Morgan: Biological and synthetic hierarchical composites, Phys. Today 45, 60–67 (1992) E. Baer, A. Hiltner, A.R. Morgan: Biological and synthetic hierarchical composites, Phys. Today 45, 60–67 (1992)
32.11.
go back to reference A.V. Srinivasan, G.K. Haritos, F.L. Hedberg: Biomimetics: advancing man-made materials through guidance from nature, Appl. Mech. Rev. 44, 463–481 (1991) A.V. Srinivasan, G.K. Haritos, F.L. Hedberg: Biomimetics: advancing man-made materials through guidance from nature, Appl. Mech. Rev. 44, 463–481 (1991)
32.12.
go back to reference G. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, S. Cowin: The anisotropic Hookeʼs law for cancellous bone and wood, J. Elast. 53, 125–146 (1999)MATH G. Yang, J. Kabel, B. Van Rietbergen, A. Odgaard, R. Huiskes, S. Cowin: The anisotropic Hookeʼs law for cancellous bone and wood, J. Elast. 53, 125–146 (1999)MATH
32.13.
go back to reference P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999) P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32, 1005–1012 (1999)
32.14.
go back to reference C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod: Low mechanical signals strengthen bones, Nature 412, 603–604 (2001) C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod: Low mechanical signals strengthen bones, Nature 412, 603–604 (2001)
32.15.
go back to reference P.K.D.V. Yarlagadda, M. Chandrasekharan, J.Y.M. Shyan: Recent advances and current developments in tissue scaffolding, Bio-med. Mater. Eng. 15, 159–177 (2005) P.K.D.V. Yarlagadda, M. Chandrasekharan, J.Y.M. Shyan: Recent advances and current developments in tissue scaffolding, Bio-med. Mater. Eng. 15, 159–177 (2005)
32.16.
go back to reference S. Saidpour: Assessment of carbon fibre composite fracture fixation plate using finite element analysis, J. Biomed. Eng. 34, 1157–1163 (2006) S. Saidpour: Assessment of carbon fibre composite fracture fixation plate using finite element analysis, J. Biomed. Eng. 34, 1157–1163 (2006)
32.17.
go back to reference J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopaedic tissue engineering, Biomaterials 21, 2405–2412 (2000) J.S. Temenoff, A.G. Mikos: Injectable biodegradable materials for orthopaedic tissue engineering, Biomaterials 21, 2405–2412 (2000)
32.18.
go back to reference R. Pietrabissa, V. Qauglini, T. Villa: Experimental methods in testing of tissues and implants, Meccanica 37, 477–488 (2002) R. Pietrabissa, V. Qauglini, T. Villa: Experimental methods in testing of tissues and implants, Meccanica 37, 477–488 (2002)
32.19.
go back to reference G. Heimke, P. Griss: Ceramic implant materials, Med. Biol. Eng. Comput. 18, 503–510 (1980) G. Heimke, P. Griss: Ceramic implant materials, Med. Biol. Eng. Comput. 18, 503–510 (1980)
32.20.
go back to reference J.B. Park, R.S. Lakes: Biomaterials (Plenum, New York 1992) J.B. Park, R.S. Lakes: Biomaterials (Plenum, New York 1992)
32.21.
go back to reference E.N. Brown, M.L. Peterson, K.J. Grande-Allen: Biological systems and materials: a review of the field of biomechanics and the role of the society for experimental mechanics, Exp. Techn. 2, 21–29 (2006) E.N. Brown, M.L. Peterson, K.J. Grande-Allen: Biological systems and materials: a review of the field of biomechanics and the role of the society for experimental mechanics, Exp. Techn. 2, 21–29 (2006)
32.22.
go back to reference A.J. van der Pijl, W. Swieszkowski, H.E.N. Bersee: Design of a wear simulator for in vitro should prostheses testing, Exp. Techn. 5, 45–48 (2004) A.J. van der Pijl, W. Swieszkowski, H.E.N. Bersee: Design of a wear simulator for in vitro should prostheses testing, Exp. Techn. 5, 45–48 (2004)
32.23.
go back to reference A.J. Rapoff, W.M. Johnson, S. Venkataraman: Transverse plane shear test fixture for total knee system, Exp. Techn. 3, 37–39 (2003) A.J. Rapoff, W.M. Johnson, S. Venkataraman: Transverse plane shear test fixture for total knee system, Exp. Techn. 3, 37–39 (2003)
32.24.
go back to reference R. Oosterom, H.E.N. Bersee: Force controlled fatigue testing of shoulder prostheses, Exp. Techn. 5, 33–37 (2004) R. Oosterom, H.E.N. Bersee: Force controlled fatigue testing of shoulder prostheses, Exp. Techn. 5, 33–37 (2004)
32.25.
go back to reference V.L. Roberts: Strain-gage techniques in biomechanics, Exp. Mech. 6, 19A–22A (1966) V.L. Roberts: Strain-gage techniques in biomechanics, Exp. Mech. 6, 19A–22A (1966)
32.26.
go back to reference L. Cristofolini, M. Viceconti: Comparison of uniaxial and triaxial rosette gages for strain measurement on the femur, Exp. Mech. 37, 350–354 (1997) L. Cristofolini, M. Viceconti: Comparison of uniaxial and triaxial rosette gages for strain measurement on the femur, Exp. Mech. 37, 350–354 (1997)
32.27.
go back to reference C. Franck, S. Hong, S.A. Maskarinee, D.A. Tirrell, G. Ravichandran: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation, Exp. Mech. 47(3), 427–438 (2007) C. Franck, S. Hong, S.A. Maskarinee, D.A. Tirrell, G. Ravichandran: Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation, Exp. Mech. 47(3), 427–438 (2007)
32.28.
go back to reference A.B. Liggins, W.R. Hardie, J.B. Finlay: The spatial and pressure resolution of Fuji pressure-sensitive films, Exp. Mech. 35, 166–173 (1995) A.B. Liggins, W.R. Hardie, J.B. Finlay: The spatial and pressure resolution of Fuji pressure-sensitive films, Exp. Mech. 35, 166–173 (1995)
32.29.
go back to reference R.D. Peindl, M.E. Harrow, P.M. Connor, D.M. Banks, D.R. DʼAlessandro: Photoelastic stress freezing analysis of total shoulder replacement systems, Exp. Mech. 44, 228–234 (2004) R.D. Peindl, M.E. Harrow, P.M. Connor, D.M. Banks, D.R. DʼAlessandro: Photoelastic stress freezing analysis of total shoulder replacement systems, Exp. Mech. 44, 228–234 (2004)
32.30.
go back to reference R.J. Nikolai, J.W. Schweiker: Investigation of root-periodontium interface stresses and displacements for orthodontic application, Exp. Mech. 12, 406–413 (1972) R.J. Nikolai, J.W. Schweiker: Investigation of root-periodontium interface stresses and displacements for orthodontic application, Exp. Mech. 12, 406–413 (1972)
32.31.
go back to reference H. Vaillancourt, D. McCammond, R.M. Pilliar: Validation of a nonlinear two-dimensional interface element for finite-element analysis, Exp. Mech. 36, 49–54 (1996) H. Vaillancourt, D. McCammond, R.M. Pilliar: Validation of a nonlinear two-dimensional interface element for finite-element analysis, Exp. Mech. 36, 49–54 (1996)
32.32.
go back to reference J.F. Dias Rodrigues, H. Lopes, F.Q. de Melo, J.A. Simões: Experimental modal analysis of a synthetic composite femur, Exp. Mech. 44, 29–32 (2004) J.F. Dias Rodrigues, H. Lopes, F.Q. de Melo, J.A. Simões: Experimental modal analysis of a synthetic composite femur, Exp. Mech. 44, 29–32 (2004)
32.33.
go back to reference J.-J. Ryu, V. Daval, P. Shrotriya: Onset of surface damage in modular orthopedic implants: influence of normal contact loading and stress-assisted dissolution, Exp. Mech. 47(3), 395–403 (2007) J.-J. Ryu, V. Daval, P. Shrotriya: Onset of surface damage in modular orthopedic implants: influence of normal contact loading and stress-assisted dissolution, Exp. Mech. 47(3), 395–403 (2007)
32.34.
go back to reference N.J. Hallab, J.J. Jacobs: Orthopaedic implant fretting corrosion, Corros. Rev. 21, 183–213 (2003) N.J. Hallab, J.J. Jacobs: Orthopaedic implant fretting corrosion, Corros. Rev. 21, 183–213 (2003)
32.35.
go back to reference S.L.-Y. Woo, K.S. Lothringer, W.H. Akeson, R.D. Coutts, Y.K. Woo, B.R. Simon, M.A. Gomez: Less rigid internal fixation plates: historical perspectives and new concepts, J. Orthop. Res. 1, 431–449 (2005) S.L.-Y. Woo, K.S. Lothringer, W.H. Akeson, R.D. Coutts, Y.K. Woo, B.R. Simon, M.A. Gomez: Less rigid internal fixation plates: historical perspectives and new concepts, J. Orthop. Res. 1, 431–449 (2005)
32.36.
go back to reference I.M. Peterson, A. Pajares, B.R. Lawn, V.P. Thompson, E.D. Rekow: Mechanical characterization of dental ceramics by Hertzian contacts, J. Dent. Res. 77, 589–602 (1998) I.M. Peterson, A. Pajares, B.R. Lawn, V.P. Thompson, E.D. Rekow: Mechanical characterization of dental ceramics by Hertzian contacts, J. Dent. Res. 77, 589–602 (1998)
32.37.
go back to reference K. Tayton, C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings: The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors, J. Bone Joint Surg. 64-B, 105–111 (1982) K. Tayton, C. Johnson-Nurs, B. McKibbin, J. Bradley, G. Hastings: The use of semi-rigid carbon-fibre reinforced plates for fixation of human factors, J. Bone Joint Surg. 64-B, 105–111 (1982)
32.38.
go back to reference D.A. Rikli, R. Curtis, C. Shilling, J. Goldhahn: The potential of bioresorbable plates and screws in distal radius fracture fixation, Injury 33, B77–B83 (2002) D.A. Rikli, R. Curtis, C. Shilling, J. Goldhahn: The potential of bioresorbable plates and screws in distal radius fracture fixation, Injury 33, B77–B83 (2002)
32.39.
go back to reference A. Foux, A. Yeadon, H.K. Uhthoff: Improved fracture healing with less rigid plates: a biomechanical study in dogs, Clin. Orthop. Rel. Res. 339, 232–245 (1995) A. Foux, A. Yeadon, H.K. Uhthoff: Improved fracture healing with less rigid plates: a biomechanical study in dogs, Clin. Orthop. Rel. Res. 339, 232–245 (1995)
32.40.
go back to reference S. Saha, S. Pal: Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435–462 (2004) S. Saha, S. Pal: Mechanical properties of bone cement: a review, J. Biomed. Mater. Res. 18, 435–462 (2004)
32.41.
go back to reference J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: an approach to isolate mechanical force, Appl. Phys. Sci. 100, 1484–1489 (2003) J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen: Cells lying on a bed of microneedles: an approach to isolate mechanical force, Appl. Phys. Sci. 100, 1484–1489 (2003)
32.42.
go back to reference M.F. Ashby: The mechanical properties of cellular solids, Metall. Trans. 14A, 1755–1769 (1983) M.F. Ashby: The mechanical properties of cellular solids, Metall. Trans. 14A, 1755–1769 (1983)
32.43.
go back to reference W.F. Brace: Permeability from resistivity and pore shape, J. Geophys. Res. 82, 3343–3349 (1977) W.F. Brace: Permeability from resistivity and pore shape, J. Geophys. Res. 82, 3343–3349 (1977)
32.44.
go back to reference C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for muscoskeletal tissue engineering, J. Biomed. Mater. Res. 55, 141–150 (2001) C.M. Agrawal, R.B. Ray: Biodegradable polymeric scaffolds for muscoskeletal tissue engineering, J. Biomed. Mater. Res. 55, 141–150 (2001)
32.45.
go back to reference F.J. OʼBrien, B.A. Harley, I.V. Yannas, L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26, 433–441 (2005) F.J. OʼBrien, B.A. Harley, I.V. Yannas, L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials 26, 433–441 (2005)
32.46.
go back to reference I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy: Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci., Vol. 86 (1989) pp. 933–937 I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy: Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin, Proc. Natl. Acad. Sci., Vol. 86 (1989) pp. 933–937
32.47.
go back to reference D. Bynum Jr., W.B. Ledtter, C.L. Boyd, D.R. Ray: Holding characteristics of fasteners in bone, Exp. Mech. 11, 363–369 (1971) D. Bynum Jr., W.B. Ledtter, C.L. Boyd, D.R. Ray: Holding characteristics of fasteners in bone, Exp. Mech. 11, 363–369 (1971)
32.48.
go back to reference P.M. Talaia, A. Ramos, I. Abe, M.W. Schiller, P. Lopes, R.N. Nogueira, J.L. Pinto, R. Claramunt, J.A. Simões: Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges, Exp. Mech. 47(3), 355–363 (2007) P.M. Talaia, A. Ramos, I. Abe, M.W. Schiller, P. Lopes, R.N. Nogueira, J.L. Pinto, R. Claramunt, J.A. Simões: Plated and intact femur strains in fracture fixation using fiber bragg gratings and strain gauges, Exp. Mech. 47(3), 355–363 (2007)
32.49.
go back to reference S. Inceoglu, R.F. McLain, S. Cayli, C. Kilincer, L. Ferrara: A new screw pullout test incorporating the effects of stress relaxation, Exp. Techn. 4, 19–21 (2005) S. Inceoglu, R.F. McLain, S. Cayli, C. Kilincer, L. Ferrara: A new screw pullout test incorporating the effects of stress relaxation, Exp. Techn. 4, 19–21 (2005)
32.50.
go back to reference D.D. Wright-Charlesworth, D.M. Miller, I. Miskioglu, J.A. King: Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months, J. Biomed. Mater. Res. 74A, 388–396 (2005) D.D. Wright-Charlesworth, D.M. Miller, I. Miskioglu, J.A. King: Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months, J. Biomed. Mater. Res. 74A, 388–396 (2005)
32.51.
go back to reference D.D. Wright-Charlesworth, W.J. Peers, I. Miskioglu, L.L. Loo: Nanomechanical properties of self-reinforced composite poly(methylmethacrylate) as a function of processing temperature, J. Biomed. Mater. Res. 74A, 306–314 (2005) D.D. Wright-Charlesworth, W.J. Peers, I. Miskioglu, L.L. Loo: Nanomechanical properties of self-reinforced composite poly(methylmethacrylate) as a function of processing temperature, J. Biomed. Mater. Res. 74A, 306–314 (2005)
32.52.
go back to reference F. Flueckiger, H. Sternthal, G.E. Klein, M. Aschauer, D. Szolar, G. Kleinhappl: Strength, elasticity, plasticity of expandable metal stents: in vitro studies with three types of stress, J. Vasc. Interv. Radiol. 5, 745–750 (1994) F. Flueckiger, H. Sternthal, G.E. Klein, M. Aschauer, D. Szolar, G. Kleinhappl: Strength, elasticity, plasticity of expandable metal stents: in vitro studies with three types of stress, J. Vasc. Interv. Radiol. 5, 745–750 (1994)
32.53.
go back to reference J. Hanus, J. Zahora: Measurement and comparison of mechanical properties of Nitinol stents, Phys. Scr. T118, 264–267 (2005) J. Hanus, J. Zahora: Measurement and comparison of mechanical properties of Nitinol stents, Phys. Scr. T118, 264–267 (2005)
32.54.
go back to reference K.E. Perry, C. Kugler: Non-zero mean fatigue testing of NiTi, Exp. Techn. 1, 37–38 (2002) K.E. Perry, C. Kugler: Non-zero mean fatigue testing of NiTi, Exp. Techn. 1, 37–38 (2002)
32.55.
go back to reference S.C. Schrader, R. Bear: Evaluation of the compressive mechanical properties of endoluminal metal stents, Cathet. Cardiovasc. Diagn. 44, 179–187 (1998) S.C. Schrader, R. Bear: Evaluation of the compressive mechanical properties of endoluminal metal stents, Cathet. Cardiovasc. Diagn. 44, 179–187 (1998)
32.56.
go back to reference J.P. Nuutinen, C. Clerc, P. Tormala: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents, J. Biomater. Sci. Polym. Ed. 14, 677–687 (2003) J.P. Nuutinen, C. Clerc, P. Tormala: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents, J. Biomater. Sci. Polym. Ed. 14, 677–687 (2003)
32.57.
go back to reference R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent – part II: pressure-diameter relationship, J. Appl. Mech. 71, 697–705 (2004)MATH R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent – part II: pressure-diameter relationship, J. Appl. Mech. 71, 697–705 (2004)MATH
32.58.
go back to reference R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent- part II: A beam-on-elastic foundation model, J. Appl. Mech. 71, 706–712 (2004)MATH R. Wang, K. Ravi-Chandar: Mechanical response of a metallic aortic stent- part II: A beam-on-elastic foundation model, J. Appl. Mech. 71, 706–712 (2004)MATH
32.59.
go back to reference D.S. Goldin, S.L. Venneri, A.K. Noor: The great out of the small, Mech. Eng. 122, 70–79 (2000) D.S. Goldin, S.L. Venneri, A.K. Noor: The great out of the small, Mech. Eng. 122, 70–79 (2000)
32.60.
go back to reference C. Greiner, A.D. Campo, E. Arzt: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir 23, 3495–3502 (2007) C. Greiner, A.D. Campo, E. Arzt: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload, Langmuir 23, 3495–3502 (2007)
32.61.
go back to reference E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004) E.N. Brown, S.R. White, N.R. Sottos: Microcapsule induced toughening in a self-healing polymer composite, J. Mater. Sci. 39, 1703–1710 (2004)
32.62.
go back to reference C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher: Viruses as vehicles for growth, organization and assembly of materials, Acta Mater. 51, 5867–5880 (2003) C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher: Viruses as vehicles for growth, organization and assembly of materials, Acta Mater. 51, 5867–5880 (2003)
32.63.
go back to reference S. Suresh, A. Mortenson: Fundamentals of Functionally Graded Materials (Institute of Materials, London 1998) S. Suresh, A. Mortenson: Fundamentals of Functionally Graded Materials (Institute of Materials, London 1998)
32.64.
go back to reference S. Amada, Y. Ichikawa, T. Munekata, Y. Nagese, H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Compos. B 28B, 13–20 (1997) S. Amada, Y. Ichikawa, T. Munekata, Y. Nagese, H. Shimizu: Fiber texture and mechanical graded structure of bamboo, Compos. B 28B, 13–20 (1997)
32.65.
go back to reference P. Kreuz, W. Arnold, A.B. Kesel: Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng. 29, 1054–1058 (2001) P. Kreuz, W. Arnold, A.B. Kesel: Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface, Ann. Biomed. Eng. 29, 1054–1058 (2001)
32.66.
go back to reference M. Niino, S. Maeda: Recent development status of functionally gradient materials, ISIJ Int. 30, 699–703 (1990) M. Niino, S. Maeda: Recent development status of functionally gradient materials, ISIJ Int. 30, 699–703 (1990)
32.67.
go back to reference P.M. Bendsoe, N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1998)MathSciNet P.M. Bendsoe, N. Kikuchi: Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197–224 (1998)MathSciNet
32.68.
go back to reference T. Hirano, T. Yamada, J. Teraki, A. Kumakawa, M. Niino, K. Wakashima: Improvement in design accuracy of functionally gradient material for space plane applications, Proc. 7th Int. Symp. Space Technol. Sci. (Tokyo 1990) T. Hirano, T. Yamada, J. Teraki, A. Kumakawa, M. Niino, K. Wakashima: Improvement in design accuracy of functionally gradient material for space plane applications, Proc. 7th Int. Symp. Space Technol. Sci. (Tokyo 1990)
32.69.
go back to reference C. Schiller, M. Siedler, F. Peters, M. Epple: Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement, Ceram. Trans. 114, 97–108 (2001) C. Schiller, M. Siedler, F. Peters, M. Epple: Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement, Ceram. Trans. 114, 97–108 (2001)
32.70.
go back to reference A.J. Markworth, K.S. Ramesh, W.P. Parks Jr.: Review: Modelling studies applied to functionally graded materials, J. Mater. Sci. 30, 2183–2193 (1995) A.J. Markworth, K.S. Ramesh, W.P. Parks Jr.: Review: Modelling studies applied to functionally graded materials, J. Mater. Sci. 30, 2183–2193 (1995)
32.71.
go back to reference N. Noda: Thermal stresses in functionally graded materials, J. Thermal Stresses 22, 477–512 (1999)MathSciNet N. Noda: Thermal stresses in functionally graded materials, J. Thermal Stresses 22, 477–512 (1999)MathSciNet
32.72.
go back to reference C.E. Rousseau, H.V. Tippur: Influence of elastic gradient profiles on dynamically loaded functionally graded materials: Cracks along the gradient, Int. J. Solids Struct. 38, 7839–7856 (2001)MATH C.E. Rousseau, H.V. Tippur: Influence of elastic gradient profiles on dynamically loaded functionally graded materials: Cracks along the gradient, Int. J. Solids Struct. 38, 7839–7856 (2001)MATH
32.73.
go back to reference A.M. Afsar, H. Sekine: Optimum material distribution for prescribed apparent fracture toughness in thick-walled FGM circular pipes, Int. J. Press. Vessels Piping 78, 471–484 (2001) A.M. Afsar, H. Sekine: Optimum material distribution for prescribed apparent fracture toughness in thick-walled FGM circular pipes, Int. J. Press. Vessels Piping 78, 471–484 (2001)
32.74.
go back to reference T.J. Chung, A. Neubrand, J. Rodel: Effect of residual stress on the fracture toughness of Al_20_3/Al gradient materials, Euro Ceram. VII, PT1–3 206, 965–968 (2002) T.J. Chung, A. Neubrand, J. Rodel: Effect of residual stress on the fracture toughness of Al_20_3/Al gradient materials, Euro Ceram. VII, PT1–3 206, 965–968 (2002)
32.75.
go back to reference K.S. Ravichandran: Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng. A 201, 269–276 (1995) K.S. Ravichandran: Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng. A 201, 269–276 (1995)
32.76.
go back to reference Y.D. Lee, F. Erdogan: Residual/thermal stresses in FGM and laminated thermal barrier coatings, Int. J. Fract. 69, 145–165 (1994) Y.D. Lee, F. Erdogan: Residual/thermal stresses in FGM and laminated thermal barrier coatings, Int. J. Fract. 69, 145–165 (1994)
32.77.
go back to reference S. Suresh, A.E. Giannakopoulos, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with sharp interface, J. Mech. Phys. Solids 42, 979–1018 (1994)MATH S. Suresh, A.E. Giannakopoulos, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with sharp interface, J. Mech. Phys. Solids 42, 979–1018 (1994)MATH
32.78.
go back to reference A.E. Giannakopoulos, S. Suresh, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, J. Mech. Phys. Solids 43, 1335–1354 (1995)MathSciNet A.E. Giannakopoulos, S. Suresh, M. Olsson: Elastoplastic analysis of thermal cycling: layered materials with compositional gradients, J. Mech. Phys. Solids 43, 1335–1354 (1995)MathSciNet
32.79.
go back to reference M. Finot, S. Suresh: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids 44, 683–721 (1996) M. Finot, S. Suresh: Small and large deformation of thick and thin-film multi-layers: effects of layer geometry, plasticity and compositional gradients, J. Mech. Phys. Solids 44, 683–721 (1996)
32.80.
go back to reference Q.R. Hou, J. Gao: Thermal stress relaxation by a composition-graded intermediate layer, Mod. Phys. Lett. 14, 685–692 (2000) Q.R. Hou, J. Gao: Thermal stress relaxation by a composition-graded intermediate layer, Mod. Phys. Lett. 14, 685–692 (2000)
32.81.
go back to reference B.H. Rabin, R.L. Williamson, H.A. Bruck, X.L. Wang, T.R. Watkins, D.R. Clarke: Residual strains in an Al_2O_3-Ni joint bonded with a composite interlayer: experimental measurements and FEM analysis, J. Am. Ceram. Soc. 81, 1541–1549 (1998) B.H. Rabin, R.L. Williamson, H.A. Bruck, X.L. Wang, T.R. Watkins, D.R. Clarke: Residual strains in an Al_2O_3-Ni joint bonded with a composite interlayer: experimental measurements and FEM analysis, J. Am. Ceram. Soc. 81, 1541–1549 (1998)
32.82.
go back to reference B.H. Rabin, R.J. Heaps: Powder processing of Ni-Al_2O_3 FGM, Ceram. Trans. 34, 173–180 (1993) B.H. Rabin, R.J. Heaps: Powder processing of Ni-Al_2O_3 FGM, Ceram. Trans. 34, 173–180 (1993)
32.83.
go back to reference R.L. Williamson, B.H. Rabin, J.T. Drake: Finite element analysis of thermal residual stresses at graded ceramic–metal interfaces part I: model description and geometrical effects, J. Appl. Phys. 74, 1310–1320 (1993) R.L. Williamson, B.H. Rabin, J.T. Drake: Finite element analysis of thermal residual stresses at graded ceramic–metal interfaces part I: model description and geometrical effects, J. Appl. Phys. 74, 1310–1320 (1993)
32.84.
go back to reference J.W. Eischen: Fracture of nonhomogeneous materials, Int. J. Fract. 34, 3–22 (1987) J.W. Eischen: Fracture of nonhomogeneous materials, Int. J. Fract. 34, 3–22 (1987)
32.85.
go back to reference G. Anlas, M.H. Santare, J. Lambros: Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract. 104, 131–143 (2000) G. Anlas, M.H. Santare, J. Lambros: Numerical calculation of stress intensity factors in functionally graded materials, Int. J. Fract. 104, 131–143 (2000)
32.86.
go back to reference M. Dao, P. Gu, A. Maewal, R.J. Asaro: A micromechanical study of residual stresses in functionally graded materials, Acta Mater. 45, 3265–3276 (1997) M. Dao, P. Gu, A. Maewal, R.J. Asaro: A micromechanical study of residual stresses in functionally graded materials, Acta Mater. 45, 3265–3276 (1997)
32.87.
go back to reference M.H. Santare, J. Lambros: Use of graded finite elements to model the behavior of nonhomogeneous materials, J. Appl. Mech.-Trans. ASME 67, 819–822 (2000)MATH M.H. Santare, J. Lambros: Use of graded finite elements to model the behavior of nonhomogeneous materials, J. Appl. Mech.-Trans. ASME 67, 819–822 (2000)MATH
32.88.
go back to reference E.S.C. Chin: Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A 259, 155–161 (1999) E.S.C. Chin: Army focused research team on functionally graded armor composites, Mater. Sci. Eng. A 259, 155–161 (1999)
32.89.
go back to reference H.A. Bruck: A one-dimensional model for designing functionally graded materials to attenuate stress waves, Int. J. Solids Struct. 37, 6383–6395 (2000)MATH H.A. Bruck: A one-dimensional model for designing functionally graded materials to attenuate stress waves, Int. J. Solids Struct. 37, 6383–6395 (2000)MATH
32.90.
go back to reference X. Han, G.R. Liu, K.Y. Lam: Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52, 851–865 (2001)MATH X. Han, G.R. Liu, K.Y. Lam: Transient waves in plates of functionally graded materials, Int. J. Numer. Methods Eng. 52, 851–865 (2001)MATH
32.91.
go back to reference G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Compos. Sci. Technol. 61, 1401–1411 (2001) G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam: Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Compos. Sci. Technol. 61, 1401–1411 (2001)
32.92.
go back to reference J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Sadaune: Acoustic wave propagation in continuous functionally graded plates: an extension of the legendre polynomial approach, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 48, 1332–1340 (2001) J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, V. Sadaune: Acoustic wave propagation in continuous functionally graded plates: an extension of the legendre polynomial approach, IEEE Trans. Ultrason. Ferroelectr. Frequ. Control 48, 1332–1340 (2001)
32.93.
go back to reference Y. Li, K.T. Ramesh, E.S.C. Chin: Dynamic characterization of layered and graded structures under impulsive loading, Int. J. Solids Struct. 38, 6045–6061 (2001)MATH Y. Li, K.T. Ramesh, E.S.C. Chin: Dynamic characterization of layered and graded structures under impulsive loading, Int. J. Solids Struct. 38, 6045–6061 (2001)MATH
32.94.
go back to reference P.R. Marur, H.V. Tippur: Evaluation of mechanical properties of functionally graded materials, J. Test. Eval. 26, 539–545 (1998) P.R. Marur, H.V. Tippur: Evaluation of mechanical properties of functionally graded materials, J. Test. Eval. 26, 539–545 (1998)
32.95.
go back to reference V. Parameswaram, A. Shukla: Crack tip stress fields for dynamic fracture in functionally gradient materials, Mech. Mater. 31, 579–596 (1999) V. Parameswaram, A. Shukla: Crack tip stress fields for dynamic fracture in functionally gradient materials, Mech. Mater. 31, 579–596 (1999)
32.96.
go back to reference S.S.V. Kandula, J. Abanto-bueno, P.H. Geubelle, J. Lambros: Cohesive modeling of dynamic fracture in functionally graded materials, Int. J. Fract. 132, 275–296 (2005)MATH S.S.V. Kandula, J. Abanto-bueno, P.H. Geubelle, J. Lambros: Cohesive modeling of dynamic fracture in functionally graded materials, Int. J. Fract. 132, 275–296 (2005)MATH
32.97.
go back to reference J. Abanto-Bueno, J. Lambros: Experimental determination of cohesive failure properties of a photodegradable copolymer, Exp. Mech. 45, 144–152 (2005) J. Abanto-Bueno, J. Lambros: Experimental determination of cohesive failure properties of a photodegradable copolymer, Exp. Mech. 45, 144–152 (2005)
32.98.
go back to reference A. Shukla, N. Jain, R. Chona: Dynamic fracture studies in functionally graded materials, Strain 43, 76–95 (2007) A. Shukla, N. Jain, R. Chona: Dynamic fracture studies in functionally graded materials, Strain 43, 76–95 (2007)
32.99.
go back to reference V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci. 33, 3303–3311 (1998) V. Parameswaran, A. Shukla: Dynamic fracture of a functionally gradient material having discrete property variation, J. Mater. Sci. 33, 3303–3311 (1998)
32.100.
go back to reference C.-E. Rousseau, H.V. Tippur: Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis, Mech. Mater. 33, 403–421 (2001) C.-E. Rousseau, H.V. Tippur: Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis, Mech. Mater. 33, 403–421 (2001)
32.101.
go back to reference J. Huang, A.J. Rapoff: Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded materials, Proc. Inst. Mech. Eng. Part L – J. Mater. – Des. Appl., Vol. 217 (2003) pp. 23–27 J. Huang, A.J. Rapoff: Optimization design of plates with holes by mimicking bones through nonaxisymmetric functionally graded materials, Proc. Inst. Mech. Eng. Part L – J. Mater. – Des. Appl., Vol. 217 (2003) pp. 23–27
32.102.
go back to reference B. Garita, A. Rapoff: Biomimetic designs from bone, Exp. Techn. 1, 36–39 (2003) B. Garita, A. Rapoff: Biomimetic designs from bone, Exp. Techn. 1, 36–39 (2003)
32.103.
go back to reference N. Gotzen, A.R. Cross, P.G. Ifju, A.J. Rapoff: Understanding stress concentration about a nutrient foramen, J. Biomech. 36, 1511–1521 (2003) N. Gotzen, A.R. Cross, P.G. Ifju, A.J. Rapoff: Understanding stress concentration about a nutrient foramen, J. Biomech. 36, 1511–1521 (2003)
32.104.
go back to reference R.M. Gouker, S.K. Gupta, H.A. Bruck, T. Holzchuh: Manufacturing of multi-material compliant mechanisms using multi-material molding, Int. J. Adv. Manuf. Technol. 28, 1–27 (2006) R.M. Gouker, S.K. Gupta, H.A. Bruck, T. Holzchuh: Manufacturing of multi-material compliant mechanisms using multi-material molding, Int. J. Adv. Manuf. Technol. 28, 1–27 (2006)
32.105.
go back to reference L.R. Xu, H. Kuai, S. Sengupta: Dissimilar material joints with and without free-edge stress singularities part I: a biologically inspired design, Exp. Mech. 44, 608–615 (2004) L.R. Xu, H. Kuai, S. Sengupta: Dissimilar material joints with and without free-edge stress singularities part I: a biologically inspired design, Exp. Mech. 44, 608–615 (2004)
32.106.
go back to reference R.S. Trask, H.R. Williams, I.P. Bond: Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir. Biomimetics 2, P1–P9 (2007) R.S. Trask, H.R. Williams, I.P. Bond: Self-healing polymer composites: mimicking nature to enhance performance, Bioinspir. Biomimetics 2, P1–P9 (2007)
32.107.
go back to reference J.Y. Lee, G.A. Buxton, A.C. Balazs: Using nanoparticles to create self-healing composites, J. Chem. Phys. 121, 5531–5540 (2004) J.Y. Lee, G.A. Buxton, A.C. Balazs: Using nanoparticles to create self-healing composites, J. Chem. Phys. 121, 5531–5540 (2004)
32.108.
go back to reference S.M. Bleay, C.B. Loader, V.J. Hayes, L. Humberstone, P.T. Curtis: A smart repair system for polymer matrix composites, Compos. A 32, 1767–1776 (2001) S.M. Bleay, C.B. Loader, V.J. Hayes, L. Humberstone, P.T. Curtis: A smart repair system for polymer matrix composites, Compos. A 32, 1767–1776 (2001)
32.109.
go back to reference X.X. Chen, M.A. Dam, K. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl: A thermally re-mendable cross-linked polymeric material, Science 295, 1698–1702 (2002) X.X. Chen, M.A. Dam, K. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl: A thermally re-mendable cross-linked polymeric material, Science 295, 1698–1702 (2002)
32.110.
go back to reference C.M. Chung, Y.S. Roh, S.Y. Cho, J.G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition, Chem. Mater. 16, 3982–3984 (2004) C.M. Chung, Y.S. Roh, S.Y. Cho, J.G. Kim: Crack healing in polymeric materials via photochemical [2+2] cycloaddition, Chem. Mater. 16, 3982–3984 (2004)
32.111.
go back to reference E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42, 372–379 (2002) E.N. Brown, N.R. Sottos, S.R. White: Fracture testing of a self-healing polymer composite, Exp. Mech. 42, 372–379 (2002)
32.112.
go back to reference V. Birman: Stability of functionally graded shape memory alloy sandwich panels, Smart Mater. Struct. 6, 278–286 (1997) V. Birman: Stability of functionally graded shape memory alloy sandwich panels, Smart Mater. Struct. 6, 278–286 (1997)
32.113.
go back to reference K. Ho, G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target, Thin Solid Films 370, 18–29 (2000) K. Ho, G.P. Carman: Sputter deposition of NiTi thin film shape memory alloy using a heated target, Thin Solid Films 370, 18–29 (2000)
32.114.
go back to reference H.A. Bruck, C.L. Moore, T. Valentine: Characterization and modeling of bending actuation in polyurethanes with graded distributions of one-way shape memory alloy wires, Exp. Mech. 44, 62–70 (2004) H.A. Bruck, C.L. Moore, T. Valentine: Characterization and modeling of bending actuation in polyurethanes with graded distributions of one-way shape memory alloy wires, Exp. Mech. 44, 62–70 (2004)
32.115.
go back to reference H.A. Bruck, C.L. Moore, T. Valentine: Repeatable bending actuation in polyurethanes using opposing embedded one-way shape memory alloy wires exhibiting large strain recovery, Smart Mater. Struct. 11, 509–518 (2002) H.A. Bruck, C.L. Moore, T. Valentine: Repeatable bending actuation in polyurethanes using opposing embedded one-way shape memory alloy wires exhibiting large strain recovery, Smart Mater. Struct. 11, 509–518 (2002)
32.116.
go back to reference C.L. Moore, H.A. Bruck: A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethanes, Smart Mater. Struct. 11, 130–139 (2002) C.L. Moore, H.A. Bruck: A fundamental investigation into large strain recovery of one-way shape memory alloy wires embedded in flexible polyurethanes, Smart Mater. Struct. 11, 130–139 (2002)
32.117.
go back to reference E. Fukada, I. Yasuda: On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12, 1158–1162 (1957) E. Fukada, I. Yasuda: On the piezoelectric effect of bone, J. Phys. Soc. Jpn. 12, 1158–1162 (1957)
32.118.
go back to reference G. Song, V. Sethi, H.N. Li: Vibration control of civil structures using piezoceramic smart materials: a review, Eng. Struct. 28, 1513–1524 (2006) G. Song, V. Sethi, H.N. Li: Vibration control of civil structures using piezoceramic smart materials: a review, Eng. Struct. 28, 1513–1524 (2006)
32.119.
go back to reference J. Sirohi, I. Chopra: Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000) J. Sirohi, I. Chopra: Fundamental understanding of piezoelectric strain sensors, J. Intell. Mater. Syst. Struct. 11, 246–257 (2000)
32.120.
go back to reference K.D. Rolt: History of the flextensional electroacoustic transducer, J. Acoust. Soc. Am. 87, 1340–1349 (1990) K.D. Rolt: History of the flextensional electroacoustic transducer, J. Acoust. Soc. Am. 87, 1340–1349 (1990)
32.121.
go back to reference B.J. Pokines, E. Garcia: A smart material microamplification mechanisms fabricated using LIGA, Smart Mater. Struct. 7, 105–112 (1998) B.J. Pokines, E. Garcia: A smart material microamplification mechanisms fabricated using LIGA, Smart Mater. Struct. 7, 105–112 (1998)
32.122.
go back to reference A. Garg, D.C. Agrawal: Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng. B 86, 134–143 (2001) A. Garg, D.C. Agrawal: Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng. B 86, 134–143 (2001)
32.123.
go back to reference R. Rajapakse, X. Zeng: Toughening of conducting cracks due to domain switching, Acta Mater. 49, 877–885 (2001) R. Rajapakse, X. Zeng: Toughening of conducting cracks due to domain switching, Acta Mater. 49, 877–885 (2001)
32.124.
go back to reference K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Ceram. Soc. 23, 1577–1583 (2003) K. Takagi, J.F. Li, S. Yokoyama, R. Watanabe: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators, J. Eur. Ceram. Soc. 23, 1577–1583 (2003)
32.125.
go back to reference J. Tyson, T. Schmidt, K. Galanulis: Biomechanics deformation and strain measurements with 3D image correlation phtogrammetry, Exp. Techn. 5, 39–42 (2002) J. Tyson, T. Schmidt, K. Galanulis: Biomechanics deformation and strain measurements with 3D image correlation phtogrammetry, Exp. Techn. 5, 39–42 (2002)
32.126.
go back to reference Y. Bar-Cohen: Electroactive polymers as artificial muscles: reality and challenges, Proc. 42nd AIAA Struct. Struct. Dyn. Mater. Conf. (Seattle 2001) Y. Bar-Cohen: Electroactive polymers as artificial muscles: reality and challenges, Proc. 42nd AIAA Struct. Struct. Dyn. Mater. Conf. (Seattle 2001)
32.127.
go back to reference G. Mayer, M. Sarikaya: Rigid biological composite materials: structural examples for biomimetic design, Exp. Mech. 42, 394–403 (2002) G. Mayer, M. Sarikaya: Rigid biological composite materials: structural examples for biomimetic design, Exp. Mech. 42, 394–403 (2002)
32.128.
go back to reference G. Mayer: Rigid biological systems as models for synthetic composites, Science 310, 1144–1147 (2005) G. Mayer: Rigid biological systems as models for synthetic composites, Science 310, 1144–1147 (2005)
32.129.
go back to reference F. Barthelat, H. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Exp. Mech. 47(3), 311–324 (2007) F. Barthelat, H. Espinosa: An experimental investigation of deformation and fracture of nacre-mother of pearl, Exp. Mech. 47(3), 311–324 (2007)
32.130.
go back to reference L.S. Gyger Jr., P. Kulkarni, H.A. Bruck, S.K. Gupta, O.C. Wilson Jr.: Replamineform inspired bones structures (RIBS) using multi-piece molds and advanced ceramic gelcasting technology, Mater. Sci. Eng. C 27, 646–653 (2007) L.S. Gyger Jr., P. Kulkarni, H.A. Bruck, S.K. Gupta, O.C. Wilson Jr.: Replamineform inspired bones structures (RIBS) using multi-piece molds and advanced ceramic gelcasting technology, Mater. Sci. Eng. C 27, 646–653 (2007)
32.131.
go back to reference A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre, Proc. R. Soc. London: Ser. B. Biol. Sci, Vol. 234 (1988) pp. 415–440 A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre, Proc. R. Soc. London: Ser. B. Biol. Sci, Vol. 234 (1988) pp. 415–440
32.132.
go back to reference S.L. Tracy, H.M. Jennings: The growth of self-aligned calcium carbonate precipitates on inorganic substrates, J. Mater. Sci. 33, 4075–4077 (1998) S.L. Tracy, H.M. Jennings: The growth of self-aligned calcium carbonate precipitates on inorganic substrates, J. Mater. Sci. 33, 4075–4077 (1998)
32.133.
go back to reference E.W. White: Biomaterials innovation: itʼs a long road to the operating room, Mater. Res. Innov. 1, 57–63 (1997) E.W. White: Biomaterials innovation: itʼs a long road to the operating room, Mater. Res. Innov. 1, 57–63 (1997)
32.134.
go back to reference C. Müller-Mai, C. Voigt, S.R. de Almeida Reis, H. Herbst, U.M. Gross: Substitution of natural coral by cortical bone and bone marrow in the rat femur. 2. SEM, TEM, and in situ hybridization, J. Mater. Sci. Mater. Med. 7, 479–488 (1996) C. Müller-Mai, C. Voigt, S.R. de Almeida Reis, H. Herbst, U.M. Gross: Substitution of natural coral by cortical bone and bone marrow in the rat femur. 2. SEM, TEM, and in situ hybridization, J. Mater. Sci. Mater. Med. 7, 479–488 (1996)
32.135.
go back to reference E.W. White, J.N. Weber, D.M. Roy, E.L. Owen, R.T. Chiroff, R.A. White: Replamineform porous biomaterials for hard tissue implant applications, J. Biomed. Mater. Res. 9, 23–27 (1975) E.W. White, J.N. Weber, D.M. Roy, E.L. Owen, R.T. Chiroff, R.A. White: Replamineform porous biomaterials for hard tissue implant applications, J. Biomed. Mater. Res. 9, 23–27 (1975)
32.136.
go back to reference R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy: Restoration of articular surfaces overlying replamineform porous biomaterials, J. Biomed. Mater. Res. 9, 29 (1975) R.T. Chiroff, E.W. White, J.N. Weber, D.M. Roy: Restoration of articular surfaces overlying replamineform porous biomaterials, J. Biomed. Mater. Res. 9, 29 (1975)
32.137.
go back to reference S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Freezing as a path to build complex composites, Science 311, 515–518 (2006) S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Freezing as a path to build complex composites, Science 311, 515–518 (2006)
Metadata
Title
Implantable Biomedical Devices and Biologically Inspired Materials
Author
Hugh Bruck, Dr.
Copyright Year
2008
Publisher
Springer US
DOI
https://doi.org/10.1007/978-0-387-30877-7_32

Premium Partners