Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-11-2017 | Original Article | Issue 2/2018

Engineering with Computers 2/2018

Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples

Journal:
Engineering with Computers > Issue 2/2018
Authors:
Manoj Khandelwal, Aminaton Marto, Seyed Alireza Fatemi, Mahyar Ghoroqi, Danial Jahed Armaghani, T. N. Singh, Omid Tabrizi

Abstract

Shear strength parameters such as cohesion are the most significant rock parameters which can be utilized for initial design of some geotechnical engineering applications. In this study, evaluation and prediction of rock material cohesion is presented using different approaches i.e., simple and multiple regression, artificial neural network (ANN) and genetic algorithm (GA)-ANN. For this purpose, a database including three model inputs i.e., p-wave velocity, uniaxial compressive strength and Brazilian tensile strength and one output which is cohesion of limestone samples was prepared. A meaningful relationship was found for all of the model inputs with suitable performance capacity for prediction of rock cohesion. Additionally, a high level of accuracy (coefficient of determination, R 2 of 0.925) was observed developing multiple regression equation. To obtain higher performance capacity, a series of ANN and GA-ANN models were built. As a result, hybrid GA-ANN network provides higher performance for prediction of rock cohesion compared to ANN technique. GA-ANN model results (R 2 = 0.976 and 0.967 for train and test) were better compared to ANN model results (R 2 = 0.949 and 0.948 for train and test). Therefore, this technique is introduced as a new one in estimating cohesion of limestone samples.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2018

Engineering with Computers 2/2018 Go to the issue