Skip to main content
Top

2019 | OriginalPaper | Chapter

21. Implicit Nonlocality in the Framework of Viscoplasticity

Authors : Wojciech Sumelka, Tomasz Łodygowski

Published in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The considerations are addressed to the notion of implicit nonlocality in mechanical models. The term implicit means that there is no direct measure of nonlocal action in a model (like classical or fractional gradients, etc. in explicit nonlocal models), but some phenomenological material parameters can be interpreted as one that maps some experimentally observed phenomena responsible for the scale effects.
The overall discussion is conducted in the framework of the Perzyna Theory of Viscoplasticity where the role of the implicit length scale parameter plays the relaxation time of the mechanical disturbance. In this sense, in the viscoplastic range of the material behavior, the deformation at each material point contributes to the finite surrounding. The important consequence is that the solution of the IBVP described by Perzyna’s theory is unique – the relaxation time is the regularizing parameter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications (Springer, Berlin, 1988)MATHCrossRef R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis and Applications (Springer, Berlin, 1988)MATHCrossRef
go back to reference Abaqus, Abaqus Version 6.12 Collection (SIMULIA Worldwide Headquarters, Providence, 2012) Abaqus, Abaqus Version 6.12 Collection (SIMULIA Worldwide Headquarters, Providence, 2012)
go back to reference E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)CrossRef E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)CrossRef
go back to reference T.W. Barbee, L. Seaman, R. Crewdson, D. Curran, Dynamic fracture criteria for ductile and brittle metals. J. Mater. 7, 393–401 (1972)CrossRef T.W. Barbee, L. Seaman, R. Crewdson, D. Curran, Dynamic fracture criteria for ductile and brittle metals. J. Mater. 7, 393–401 (1972)CrossRef
go back to reference X. Boidin, P. Chevrier, J.R. Klepaczko, H. Sabar, Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy. Int. J. Solids Struct. 43(14–15), 4029–4630 (2006)MATH X. Boidin, P. Chevrier, J.R. Klepaczko, H. Sabar, Identification of damage mechanism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy. Int. J. Solids Struct. 43(14–15), 4029–4630 (2006)MATH
go back to reference D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure of solids. Phys. Rep. 147(5–6), 253–388 (1987)CrossRef D.R. Curran, L. Seaman, D.A. Shockey, Dynamic failure of solids. Phys. Rep. 147(5–6), 253–388 (1987)CrossRef
go back to reference S. Cochran, D. Banner, Spall studies in uranium. J. Appl. Phys. 48(7), 2729–2737 (1988)CrossRef S. Cochran, D. Banner, Spall studies in uranium. J. Appl. Phys. 48(7), 2729–2737 (1988)CrossRef
go back to reference R. de Borst, J. Pamin, Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)MathSciNetMATHCrossRef R. de Borst, J. Pamin, Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)MathSciNetMATHCrossRef
go back to reference P. Dłużewski, Continuum Theory of Dislocations as a Theory of Constitutive Modelling of Finite Elastic-Plastic Deformations. Volume 13 of IFTR Reports. Institute of Fundamental Technological Research – Polish Academy of Science, 1996. (D.Sc. Thesis – in Polish) P. Dłużewski, Continuum Theory of Dislocations as a Theory of Constitutive Modelling of Finite Elastic-Plastic Deformations. Volume 13 of IFTR Reports. Institute of Fundamental Technological Research – Polish Academy of Science, 1996. (D.Sc. Thesis – in Polish)
go back to reference W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals. Arch. Mech. 51(1), 71–86 (1999)MATH W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals. Arch. Mech. 51(1), 71–86 (1999)MATH
go back to reference W. Dornowski, P. Perzyna, Analysis of the influence of various effects on cycle fatigue damage in dynamic process. Arch. Appl. Mech. 72, 418–438 (2002)MATHCrossRef W. Dornowski, P. Perzyna, Analysis of the influence of various effects on cycle fatigue damage in dynamic process. Arch. Appl. Mech. 72, 418–438 (2002)MATHCrossRef
go back to reference W. Dornowski, P. Perzyna, Numerical investigation of localized fracture phenomena in inelastic solids. Found. Civil Environ. Eng. 7, 79–116 (2006) W. Dornowski, P. Perzyna, Numerical investigation of localized fracture phenomena in inelastic solids. Found. Civil Environ. Eng. 7, 79–116 (2006)
go back to reference M.K. Duszek–Perzyna, P. Perzyna, Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids, vol. 50. Material Instabilities: Theory and Applications (ASME, New York, 1994) M.K. Duszek–Perzyna, P. Perzyna, Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids, vol. 50. Material Instabilities: Theory and Applications (ASME, New York, 1994)
go back to reference A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef
go back to reference N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)MATHCrossRef N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)MATHCrossRef
go back to reference M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202(1–4), 213–246 (2009)MATHCrossRef M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202(1–4), 213–246 (2009)MATHCrossRef
go back to reference A. Glema, Analysis of Wave Nature in Plastic Strain Localization in Solids. Volume 379 of Rozprawy, Publishing House of Poznan University of Technology, 2004 (in Polish) A. Glema, Analysis of Wave Nature in Plastic Strain Localization in Solids. Volume 379 of Rozprawy, Publishing House of Poznan University of Technology, 2004 (in Polish)
go back to reference A. Glema, T. Łodygowski, On importance of imperfections in plastic strain localization problems in materials under impact loading. Arch. Mech. 54(5–6), 411–423 (2002)MATH A. Glema, T. Łodygowski, On importance of imperfections in plastic strain localization problems in materials under impact loading. Arch. Mech. 54(5–6), 411–423 (2002)MATH
go back to reference A. Glema, W. Kakol, T. Łodygowski, Numerical modelling of adiabatic shear band formation in a twisting test. Eng. Trans. 45(3–4), 419–431 (1997) A. Glema, W. Kakol, T. Łodygowski, Numerical modelling of adiabatic shear band formation in a twisting test. Eng. Trans. 45(3–4), 419–431 (1997)
go back to reference A. Glema, T. Łodygowski, P. Perzyna, Interaction of deformation waves and localization phenomena in inelastic solids. Comput. Methods Appl. Mech. Eng. 183, 123–140 (2000)MATHCrossRef A. Glema, T. Łodygowski, P. Perzyna, Interaction of deformation waves and localization phenomena in inelastic solids. Comput. Methods Appl. Mech. Eng. 183, 123–140 (2000)MATHCrossRef
go back to reference A. Glema, T. Łodygowski, P. Perzyna, Localization of plastic deformations as a result of wave interaction. Comput. Assist. Mech. Eng. Sci. 10(1), 81–91 (2003)MATH A. Glema, T. Łodygowski, P. Perzyna, Localization of plastic deformations as a result of wave interaction. Comput. Assist. Mech. Eng. Sci. 10(1), 81–91 (2003)MATH
go back to reference A. Glema, T. Łodygowski, W. Sumelka, P. Perzyna, The numerical analysis of the intrinsic anisotropic microdamage evolution in elasto-viscoplastic solids. Int. J. Damage Mech. 18(3), 205–231 (2009)CrossRef A. Glema, T. Łodygowski, W. Sumelka, P. Perzyna, The numerical analysis of the intrinsic anisotropic microdamage evolution in elasto-viscoplastic solids. Int. J. Damage Mech. 18(3), 205–231 (2009)CrossRef
go back to reference A. Glema, T. Lodygowski, W. Sumelka, Piotr perzyna – scientific conductor within theory of thermo-viscoplasticity. Eng. Trans. 62(3), 193–219 (2014) A. Glema, T. Lodygowski, W. Sumelka, Piotr perzyna – scientific conductor within theory of thermo-viscoplasticity. Eng. Trans. 62(3), 193–219 (2014)
go back to reference S. Hanim, J.R. Klepaczko, Numerical study of spalling in an aluminum alloy 7020 – T6. Int. J. Impact Eng. 22, 649–673 (1999)CrossRef S. Hanim, J.R. Klepaczko, Numerical study of spalling in an aluminum alloy 7020 – T6. Int. J. Impact Eng. 22, 649–673 (1999)CrossRef
go back to reference O.M. Heeres, A.S.J. Suiker, R. de Borst, A comparison between the perzyna viscoplastic model and the consistency viscoplastic model. Eur. J. Mech. A. Solids 21(1), 1–12 (2002)MATHCrossRef O.M. Heeres, A.S.J. Suiker, R. de Borst, A comparison between the perzyna viscoplastic model and the consistency viscoplastic model. Eur. J. Mech. A. Solids 21(1), 1–12 (2002)MATHCrossRef
go back to reference G.A. Holzapfel, Nonlinear Solid Mechanics – A Continuum Approach for Engineering (Chichester, England, 2000)MATH G.A. Holzapfel, Nonlinear Solid Mechanics – A Continuum Approach for Engineering (Chichester, England, 2000)MATH
go back to reference I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity (Oxford University Press, Oxford/New York/Tokyo, 1993)MATH I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity (Oxford University Press, Oxford/New York/Tokyo, 1993)MATH
go back to reference A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)MATH A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)MATH
go back to reference J.R. Klepaczko, Dynamic crack initiation, some experimental methods and modelling, in Crack Dynamics in Metallic Materials, ed. by J.R. Klepaczko (Springer, Vienna, 1990), pp. 255–453CrossRef J.R. Klepaczko, Dynamic crack initiation, some experimental methods and modelling, in Crack Dynamics in Metallic Materials, ed. by J.R. Klepaczko (Springer, Vienna, 1990), pp. 255–453CrossRef
go back to reference E. Kröner, On the physical reality of torque stresses in continuum mechanics. Int. J. Eng. Sci. 1, 261–278 (1963)CrossRef E. Kröner, On the physical reality of torque stresses in continuum mechanics. Int. J. Eng. Sci. 1, 261–278 (1963)CrossRef
go back to reference Th. Lehmann, Anisotrope plastische Formänderungen. Romanian J. Tech. Sci. Appl. Mech. 17, 1077–1086 (1972)MATH Th. Lehmann, Anisotrope plastische Formänderungen. Romanian J. Tech. Sci. Appl. Mech. 17, 1077–1086 (1972)MATH
go back to reference T. Łodygowski, On avoiding of spurious mesh sensitivity in numerical analysis of plastic strain localization. Comput. Assist. Mech. Eng. Sci. 2, 231–248 (1995) T. Łodygowski, On avoiding of spurious mesh sensitivity in numerical analysis of plastic strain localization. Comput. Assist. Mech. Eng. Sci. 2, 231–248 (1995)
go back to reference T. Łodygowski, Theoretical and Numerical Aspects of Plastic Strain Localization. Volume 312 of D.Sc. Thesis, Publishing House of Poznan University of Technology, 1996 T. Łodygowski, Theoretical and Numerical Aspects of Plastic Strain Localization. Volume 312 of D.Sc. Thesis, Publishing House of Poznan University of Technology, 1996
go back to reference T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process. Int. J. Damage Mech. 6, 364–407 (1997a)MATHCrossRef T. Łodygowski, P. Perzyna, Localized fracture of inelastic polycrystalline solids under dynamic loading process. Int. J. Damage Mech. 6, 364–407 (1997a)MATHCrossRef
go back to reference T. Łodygowski, P. Perzyna, Numerical modelling of localized fracture of inelastic solids in dynamic loading process. Int. J. Numer. Methods Eng. 40, 4137–4158 (1997b)MATHCrossRef T. Łodygowski, P. Perzyna, Numerical modelling of localized fracture of inelastic solids in dynamic loading process. Int. J. Numer. Methods Eng. 40, 4137–4158 (1997b)MATHCrossRef
go back to reference T. Łodygowski, W. Sumelka, Anisotropic damage for extreme dynamics, in Handbook of Damage Mechanics Nano to Macro Scale for Materials and Structures, ed. by G.Z. Voyiadjis (Springer, New York, 2015), pp. 1185–1220 T. Łodygowski, W. Sumelka, Anisotropic damage for extreme dynamics, in Handbook of Damage Mechanics Nano to Macro Scale for Materials and Structures, ed. by G.Z. Voyiadjis (Springer, New York, 2015), pp. 1185–1220
go back to reference T. Łodygowski, P. Perzyna, M. Lengnick, E. Stein, Viscoplastic numerical analysis of dynamic plastic shear localization for a ductile material. Arch. Mech. 46(4), 541–557 (1994)MATH T. Łodygowski, P. Perzyna, M. Lengnick, E. Stein, Viscoplastic numerical analysis of dynamic plastic shear localization for a ductile material. Arch. Mech. 46(4), 541–557 (1994)MATH
go back to reference J.K. Mackenzie, The elastic constants of a solids containing spherical holes. Proc. Phys. Soc. 63B, 2–11 (1950)MATHCrossRef J.K. Mackenzie, The elastic constants of a solids containing spherical holes. Proc. Phys. Soc. 63B, 2–11 (1950)MATHCrossRef
go back to reference M.A. Meyers, C.T. Aimone, Dynamic fracture (Spalling) of materials, Progress in Material Science, 28(1), 1–96 (1983)CrossRef M.A. Meyers, C.T. Aimone, Dynamic fracture (Spalling) of materials, Progress in Material Science, 28(1), 1–96 (1983)CrossRef
go back to reference R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef
go back to reference R.D. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef R.D. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef
go back to reference W. Moćko, Z.L. Kowalewski, Mechanical properties of a359/sicp metal matrix composites at wide range of strain rates. Appl. Mech. Mater. 82, 166–171 (2011)CrossRef W. Moćko, Z.L. Kowalewski, Mechanical properties of a359/sicp metal matrix composites at wide range of strain rates. Appl. Mech. Mater. 82, 166–171 (2011)CrossRef
go back to reference W. Moćko, Z.L. Kowalewski, Perforation test as an accuracy evaluation tool for a constitutive model of austenitic steel. Arch. Metall. Mater. 58(4), 1105–1110 (2013)CrossRef W. Moćko, Z.L. Kowalewski, Perforation test as an accuracy evaluation tool for a constitutive model of austenitic steel. Arch. Metall. Mater. 58(4), 1105–1110 (2013)CrossRef
go back to reference J.V. Morán, Continuum Models for the Dynamic Behavior of 1D Nonlinear Structured Solids. Doctoral Thesis, Publishing House of the Universidad Carlos III de Madrid, 2016 J.V. Morán, Continuum Models for the Dynamic Behavior of 1D Nonlinear Structured Solids. Doctoral Thesis, Publishing House of the Universidad Carlos III de Madrid, 2016
go back to reference J.C. Nagtegaal, J.E. de Jong, Some aspects of non-isotropic work-hardening in finite strain plasticity, in Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, ed. by E.H. Lee, R.L. Mallet (Stanford University, 1982), pp. 65–102 J.C. Nagtegaal, J.E. de Jong, Some aspects of non-isotropic work-hardening in finite strain plasticity, in Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, ed. by E.H. Lee, R.L. Mallet (Stanford University, 1982), pp. 65–102
go back to reference S. Nemat-Nasser, W.-G. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech. Mater. 37, 379–405 (2005)CrossRef S. Nemat-Nasser, W.-G. Guo, Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech. Mater. 37, 379–405 (2005)CrossRef
go back to reference J.A. Nemes, J. Eftis, Several features of a viscoplastic study of plate-impact spallation with multidimensional strain. Comput. Struct. 38(3), 317–328 (1991)MATHCrossRef J.A. Nemes, J. Eftis, Several features of a viscoplastic study of plate-impact spallation with multidimensional strain. Comput. Struct. 38(3), 317–328 (1991)MATHCrossRef
go back to reference J.A. Nemes, J. Eftis, Constitutive modelling of the dynamic fracture of smooth tensile bars. Int. J. Plast. 9(2), 243–270 (1993)MATHCrossRef J.A. Nemes, J. Eftis, Constitutive modelling of the dynamic fracture of smooth tensile bars. Int. J. Plast. 9(2), 243–270 (1993)MATHCrossRef
go back to reference J. Ostrowska-Maciejewska, Mechanika ciał odkształcalnych (PWN, Warszawa, 1994) J. Ostrowska-Maciejewska, Mechanika ciał odkształcalnych (PWN, Warszawa, 1994)
go back to reference S.K. Park, X.-L. Gao, Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift fur angewandte Mathematik und Physik 59, 904–917 (2008)MathSciNetMATHCrossRef S.K. Park, X.-L. Gao, Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift fur angewandte Mathematik und Physik 59, 904–917 (2008)MathSciNetMATHCrossRef
go back to reference P. Perzyna, Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)CrossRef P. Perzyna, Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)CrossRef
go back to reference P. Perzyna, Termodynamika materiałów niespreżystych (PWN, Warszawa, 1978) (in Polish) P. Perzyna, Termodynamika materiałów niespreżystych (PWN, Warszawa, 1978) (in Polish)
go back to reference P. Perzyna, Internal state variable description of dynamic fracture of ductile solids. Int. J. Solids Struct. 22, 797–818 (1986a)CrossRef P. Perzyna, Internal state variable description of dynamic fracture of ductile solids. Int. J. Solids Struct. 22, 797–818 (1986a)CrossRef
go back to reference P. Perzyna, Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mech. 38, 725–738 (1986b)MathSciNetMATH P. Perzyna, Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mech. 38, 725–738 (1986b)MathSciNetMATH
go back to reference P. Perzyna, Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mech. 106, 173–205 (1994)MathSciNetMATHCrossRef P. Perzyna, Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mech. 106, 173–205 (1994)MathSciNetMATHCrossRef
go back to reference P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture, in Localization and Fracture Phenomena in Inelastic Solids, Chapter 3. CISM Course and Lectures, vol. 386, ed. by P. Perzyna (Springer, 1998), pp. 99–241 P. Perzyna, Constitutive modelling of dissipative solids for localization and fracture, in Localization and Fracture Phenomena in Inelastic Solids, Chapter 3. CISM Course and Lectures, vol. 386, ed. by P. Perzyna (Springer, 1998), pp. 99–241
go back to reference P. Perzyna, The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics 27(1), 25–42 (2008) P. Perzyna, The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics 27(1), 25–42 (2008)
go back to reference P. Perzyna, The thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals. Eng. Trans. 58(1–2), 15–74 (2010) P. Perzyna, The thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals. Eng. Trans. 58(1–2), 15–74 (2010)
go back to reference P. Perzyna, Multiscale constitutive modelling of the influence of anisotropy effects on fracture phenomena in inelastic solids. Eng. Trans. 60(3), 225–284 (2012)MathSciNet P. Perzyna, Multiscale constitutive modelling of the influence of anisotropy effects on fracture phenomena in inelastic solids. Eng. Trans. 60(3), 225–284 (2012)MathSciNet
go back to reference I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, vol. 198 (Academin Press, USA, 1999)MATH I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, vol. 198 (Academin Press, USA, 1999)MATH
go back to reference D. Polyzos, D.I. Fotiadis, Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)CrossRef D. Polyzos, D.I. Fotiadis, Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470–480 (2012)CrossRef
go back to reference C. Rymarz, Mechanika ośrodków (PWN, Warszawa, 1993) (in Polish) C. Rymarz, Mechanika ośrodków (PWN, Warszawa, 1993) (in Polish)
go back to reference L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture. J. Appl. Phys. 47(11), 4814–4826 (1976)CrossRef L. Seaman, D.R. Curran, D.A. Shockey, Computational models for ductile and brittle fracture. J. Appl. Phys. 47(11), 4814–4826 (1976)CrossRef
go back to reference S. Shima, M. Oyane, Plasticity for porous solids. Int. J. Mech. Sci. 18, 285–291 (1976)CrossRef S. Shima, M. Oyane, Plasticity for porous solids. Int. J. Mech. Sci. 18, 285–291 (1976)CrossRef
go back to reference D.A. Skolnik, H.T. Liu, H.C. Wu, L.Z. Sun, Anisotropic elastoplastic and damage behavior of sicp/al composite sheets. Int. J. Damage Mech. 17, 247–272 (2008)CrossRef D.A. Skolnik, H.T. Liu, H.C. Wu, L.Z. Sun, Anisotropic elastoplastic and damage behavior of sicp/al composite sheets. Int. J. Damage Mech. 17, 247–272 (2008)CrossRef
go back to reference L.J. Sluys, Wave Propagation, Localization and Dispersion in Softening Solids. Doctoral Thesis, Delft University Press, Delft, 1992 L.J. Sluys, Wave Propagation, Localization and Dispersion in Softening Solids. Doctoral Thesis, Delft University Press, Delft, 1992
go back to reference J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)MATHCrossRef J.-H. Song, H. Wang, T. Belytschko, A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)MATHCrossRef
go back to reference W. Sumelka, The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural Defects, Publishing House of Poznan University of Technology, Poznań, 2009 W. Sumelka, The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural Defects, Publishing House of Poznan University of Technology, Poznań, 2009
go back to reference W. Sumelka, Role of covariance in continuum damage mechanics. ASCE J. Eng. Mech. 139(11), 1610–1620 (2013)CrossRef W. Sumelka, Role of covariance in continuum damage mechanics. ASCE J. Eng. Mech. 139(11), 1610–1620 (2013)CrossRef
go back to reference W. Sumelka, A. Glema, The evolution of microvoids in elastic solids, in 17th International Conference on Computer Methods in Mechanics CMM-2007, Łódź-Spała, 19–22 June 2007, pp. 347–348 W. Sumelka, A. Glema, The evolution of microvoids in elastic solids, in 17th International Conference on Computer Methods in Mechanics CMM-2007, Łódź-Spała, 19–22 June 2007, pp. 347–348
go back to reference W. Sumelka, A. Glema, Intrinsic microstructure anisotropy in elastic solids, in GAMM 2008 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Bremen, 31 Mar–4 Apr 2008 W. Sumelka, A. Glema, Intrinsic microstructure anisotropy in elastic solids, in GAMM 2008 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Bremen, 31 Mar–4 Apr 2008
go back to reference W. Sumelka, T. Łodygowski, The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes. Arch. Appl. Mech. 81(12), 1973–1992 (2011)MATHCrossRef W. Sumelka, T. Łodygowski, The influence of the initial microdamage anisotropy on macrodamage mode during extremely fast thermomechanical processes. Arch. Appl. Mech. 81(12), 1973–1992 (2011)MATHCrossRef
go back to reference W. Sumelka, T. Łodygowski, Reduction of the number of material parameters by ANN approximation. Comput. Mech. 52, 287–300 (2013)CrossRef W. Sumelka, T. Łodygowski, Reduction of the number of material parameters by ANN approximation. Comput. Mech. 52, 287–300 (2013)CrossRef
go back to reference W. Sumelka, M. Nowak, Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int. J. Numer. Anal. Methods Geomech. 40, 651–675 (2016)CrossRef W. Sumelka, M. Nowak, Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study. Int. J. Numer. Anal. Methods Geomech. 40, 651–675 (2016)CrossRef
go back to reference Y. Sun, Y. Shen, Constitutive model of granular soils using fractional-order plastic-flow rule. Int. J. Geomech. 17(8), 04017025 (2017)CrossRef Y. Sun, Y. Shen, Constitutive model of granular soils using fractional-order plastic-flow rule. Int. J. Geomech. 17(8), 04017025 (2017)CrossRef
go back to reference V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B 28(17), 1450054 (2014)CrossRef V.E. Tarasov, General lattice model of gradient elasticity. Mod. Phys. Lett. B 28(17), 1450054 (2014)CrossRef
go back to reference C. Teodosiu, F. Sidoroff, A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14(2), 165–176 (1976)MATHCrossRef C. Teodosiu, F. Sidoroff, A theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14(2), 165–176 (1976)MATHCrossRef
go back to reference R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(5), 385–414 (1963)MathSciNetMATH R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(5), 385–414 (1963)MathSciNetMATH
go back to reference C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, vol. III/3, ed. by S. Flügge (Springer, Berlin, 1965)CrossRef C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, vol. III/3, ed. by S. Flügge (Springer, Berlin, 1965)CrossRef
go back to reference G.Z. Voyiadjis, F.H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 37, 355–378 (2005)CrossRef G.Z. Voyiadjis, F.H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 37, 355–378 (2005)CrossRef
go back to reference G.Z. Voyiadjis, F.H. Abed, Implicit algorithm for finite deformation hypoelastic-viscoplasticity in fcc metals. Int. J. Numer. Methods Eng. 67, 933–959 (2006)MATHCrossRef G.Z. Voyiadjis, F.H. Abed, Implicit algorithm for finite deformation hypoelastic-viscoplasticity in fcc metals. Int. J. Numer. Methods Eng. 67, 933–959 (2006)MATHCrossRef
go back to reference G.Z. Voyiadjis, R.K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)MATHCrossRef G.Z. Voyiadjis, R.K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)MATHCrossRef
go back to reference G.Z. Voyiadjis, P.I. Kattan, Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I – theory and fundamental concepts. Mech. Res. Commun. 34, 145–154 (2007)MATHCrossRef G.Z. Voyiadjis, P.I. Kattan, Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I – theory and fundamental concepts. Mech. Res. Commun. 34, 145–154 (2007)MATHCrossRef
go back to reference R. Xiao, H. Sun, W. Chen, A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Non Linear Mech. 93, 7–14 (2017)CrossRef R. Xiao, H. Sun, W. Chen, A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int. J. Non Linear Mech. 93, 7–14 (2017)CrossRef
go back to reference F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)MATHCrossRef F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)MATHCrossRef
go back to reference S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594–614 (1903) S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594–614 (1903)
Metadata
Title
Implicit Nonlocality in the Framework of Viscoplasticity
Authors
Wojciech Sumelka
Tomasz Łodygowski
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_17

Premium Partners