Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Impregnation of PCMs in Building Materials

Authors : João M. P. Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes

Published in: Thermal Energy Storage with Phase Change Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PCMs utilize the principle of latent heat thermal storage (LHTS) to absorb energy in large quantities when there is a surplus and releasing it when there is a deficit. Correct use of PCMs can reduce peak heating and cooling loads, i.e. reduce energy usage, and may also allow for smaller dimensions of technical equipment for heating and cooling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of- the-art review and future research opportunities. Energy Build. 94, 150–176 (2015)CrossRef S.E. Kalnæs, B.P. Jelle, Phase change materials and products for building applications: a state-of- the-art review and future research opportunities. Energy Build. 94, 150–176 (2015)CrossRef
2.
go back to reference D. Zhou, C.Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593–605 (2012)CrossRef D. Zhou, C.Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593–605 (2012)CrossRef
3.
go back to reference M. Pomianowski, P. Heiselber, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)CrossRef M. Pomianowski, P. Heiselber, Y. Zhang, Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 67, 56–69 (2013)CrossRef
4.
go back to reference L.F. Cabeza, C. Barreneche, I. Martorell, L. Miró, S. Sari-Bey, M. Fois, H.O. Paksoy, N. Sahan, R. Weber, M. Constantinescu, E.M. Anghel, M. Malikova, K. Krupa, M. Delgado, P. Dolado, P. Furmanski, M. Jaworski, T. Haussmann, S. Gschwander, A.I. Fernández, Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renew. Sustain. Energy 43, 1399–1414 (2015)CrossRef L.F. Cabeza, C. Barreneche, I. Martorell, L. Miró, S. Sari-Bey, M. Fois, H.O. Paksoy, N. Sahan, R. Weber, M. Constantinescu, E.M. Anghel, M. Malikova, K. Krupa, M. Delgado, P. Dolado, P. Furmanski, M. Jaworski, T. Haussmann, S. Gschwander, A.I. Fernández, Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties. Renew. Sustain. Energy 43, 1399–1414 (2015)CrossRef
5.
go back to reference C. Barreneche, A. Solé, L. Miró, I. Martorell, A.I. Fernández, L.F. Cabeza, Study on dif-ferential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochim. Acta 553, 23–26 (2013)CrossRef C. Barreneche, A. Solé, L. Miró, I. Martorell, A.I. Fernández, L.F. Cabeza, Study on dif-ferential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochim. Acta 553, 23–26 (2013)CrossRef
6.
go back to reference E. Günther, H. Mehling, Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int. J. Thermophys. 30, 1257–1269 (2009)CrossRef E. Günther, H. Mehling, Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int. J. Thermophys. 30, 1257–1269 (2009)CrossRef
7.
go back to reference G. Feng, K. Huang, H. Xie, H. Li, X. Liu, S. Liu, C. Cao, DSC test error of phase change material (PCM) and its influence on the simulation of the PCM floor. Renew. Energy. 1148–1153 (2016) G. Feng, K. Huang, H. Xie, H. Li, X. Liu, S. Liu, C. Cao, DSC test error of phase change material (PCM) and its influence on the simulation of the PCM floor. Renew. Energy. 1148–1153 (2016)
8.
go back to reference Y.P. Zhang, Y. Jiang, A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measur. Sci. Technol. 10, 201–205 (1999)CrossRef Y.P. Zhang, Y. Jiang, A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measur. Sci. Technol. 10, 201–205 (1999)CrossRef
9.
go back to reference H. Hong, S.K. Kim, YS Kim, Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int. J. Refrig. 27, 360–366 (2004) H. Hong, S.K. Kim, YS Kim, Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int. J. Refrig. 27, 360–366 (2004)
10.
go back to reference J.H. Peck, J.J. Kim, C. Kang, H. Hong, A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. Int. J. Refrig. 29:1225–1232 (2006) J.H. Peck, J.J. Kim, C. Kang, H. Hong, A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. Int. J. Refrig. 29:1225–1232 (2006)
11.
go back to reference J.M. Marín, B. Zalba, L.F. Cabeza, H. Mehling, Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties. Meas. Sci. Technol. 14, 184–189 (2003)CrossRef J.M. Marín, B. Zalba, L.F. Cabeza, H. Mehling, Determination of enthalpy–temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties. Meas. Sci. Technol. 14, 184–189 (2003)CrossRef
12.
go back to reference A. Lázaro, E. Günther, H. Mehling, S. Hiebler, J.M. Marín, B. Zalba, Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas. Sci. Technol. 17, 2168–2174 (2006)CrossRef A. Lázaro, E. Günther, H. Mehling, S. Hiebler, J.M. Marín, B. Zalba, Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas. Sci. Technol. 17, 2168–2174 (2006)CrossRef
13.
go back to reference A. Solé, L. Miró, C. Barreneche, I. Martorell, L.F. Cabeza, Review of the T-history method to determine thermophysical properties of phase change materials (PCM). Renew. Sustain. Energy Rev. 26, 425–436 (2013)CrossRef A. Solé, L. Miró, C. Barreneche, I. Martorell, L.F. Cabeza, Review of the T-history method to determine thermophysical properties of phase change materials (PCM). Renew. Sustain. Energy Rev. 26, 425–436 (2013)CrossRef
14.
go back to reference A.M. Vaz Sá, Sustentabilidade na construção: comportamento térmico de edifícios em Portugal usando materiais de mudança de fase. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto - FEUP, 2013. (in Portuguese) A.M. Vaz Sá, Sustentabilidade na construção: comportamento térmico de edifícios em Portugal usando materiais de mudança de fase. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto - FEUP, 2013. (in Portuguese)
15.
go back to reference M. Pomianowski, P. Heiselberg, R.L. Jensen, R. Cheng, Y. Zhang, A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cem. Concr. Res. (2012) M. Pomianowski, P. Heiselberg, R.L. Jensen, R. Cheng, Y. Zhang, A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. Cem. Concr. Res. (2012)
16.
go back to reference R. Cheng, M. Pomianowski, P. Heiselberg, X. Wang, Y. Zhang, A new method to determine thermal physical properties of the mixture of PCM and concrete. Appl. Energy (2012) R. Cheng, M. Pomianowski, P. Heiselberg, X. Wang, Y. Zhang, A new method to determine thermal physical properties of the mixture of PCM and concrete. Appl. Energy (2012)
17.
go back to reference H. Mehling, L.F. Cabeza, M. Yamaha, Phase Change Materials: Application Fundamentals. Thermal Energy Storage for Sustainable Energy Consumption (Springer, Berlin, 2007) H. Mehling, L.F. Cabeza, M. Yamaha, Phase Change Materials: Application Fundamentals. Thermal Energy Storage for Sustainable Energy Consumption (Springer, Berlin, 2007)
18.
go back to reference A. Shukla, D. Buddhi, R.L. Sawhney, Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials. 2606–2614 (2008) A. Shukla, D. Buddhi, R.L. Sawhney, Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials. 2606–2614 (2008)
19.
go back to reference S.D. Sharma, D. Buddhi, R.L. Sawhney, Accelerated thermal cycle test of latent heat storage materials. Sol. Energy 66, 483–490 (1999)CrossRef S.D. Sharma, D. Buddhi, R.L. Sawhney, Accelerated thermal cycle test of latent heat storage materials. Sol. Energy 66, 483–490 (1999)CrossRef
20.
go back to reference K.C. Ting, P.N. Giannakakas, S.G. Gilbert, Durability of latent heat storage tube sheets. Sol. Energy 39, 79–85 (1987)CrossRef K.C. Ting, P.N. Giannakakas, S.G. Gilbert, Durability of latent heat storage tube sheets. Sol. Energy 39, 79–85 (1987)CrossRef
21.
go back to reference P.G. Fernanda, Salt hydrate used for latent heat storage: corrosion metals and reliability of thermal performance. Sol. Energy 41(2), 193–197 (1988)CrossRef P.G. Fernanda, Salt hydrate used for latent heat storage: corrosion metals and reliability of thermal performance. Sol. Energy 41(2), 193–197 (1988)CrossRef
22.
go back to reference A. Sharma, S.D. Sharma, D. Buddhi, Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers. Manage. 43, 1923–1930 (2002)CrossRef A. Sharma, S.D. Sharma, D. Buddhi, Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers. Manage. 43, 1923–1930 (2002)CrossRef
23.
go back to reference H. Kimura, K. Junjiro, Mixture of calcium chloride hexahydrate with salt hydrate or anhydrous salts as latent heat storage materials. Energy Convers. Manage. 28, 197–200 (1988)CrossRef H. Kimura, K. Junjiro, Mixture of calcium chloride hexahydrate with salt hydrate or anhydrous salts as latent heat storage materials. Energy Convers. Manage. 28, 197–200 (1988)CrossRef
24.
go back to reference A. Sari, K. Kaygusuz, Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling. Renew. Energy. 939–948 (2003) A. Sari, K. Kaygusuz, Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling. Renew. Energy. 939–948 (2003)
25.
go back to reference M.K. Rathod, J. Banerjee, Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew. Sustain. Energy Rev. 246–258 (2016) M.K. Rathod, J. Banerjee, Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew. Sustain. Energy Rev. 246–258 (2016)
26.
go back to reference B.P. Jelle, Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mat. Sci. 6475–6496 (2012) B.P. Jelle, Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mat. Sci. 6475–6496 (2012)
27.
go back to reference B.P. Jelle, E. Sveipe, E. Wegger, A. Gustavsen, S. Grynning, J.V. Thue, B. Time, K.R. Lisø, J. Build, Robustness classification of materials, assemblies and buildings. Phys. 37, 213–245 (2014) B.P. Jelle, E. Sveipe, E. Wegger, A. Gustavsen, S. Grynning, J.V. Thue, B. Time, K.R. Lisø, J. Build, Robustness classification of materials, assemblies and buildings. Phys. 37, 213–245 (2014)
28.
go back to reference V.V. Tyagi, D. Buddi, Thermal cycling testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. 2008. 891–899 V.V. Tyagi, D. Buddi, Thermal cycling testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. 2008. 891–899
29.
go back to reference K. Darkwa, J.S. Kim, Heat transfer in neuron composite laminated phase-change drywall. Proc. Inst. Mech. Eng. Part A—J. Power Energy. 218(A2), 83–88 (2004) K. Darkwa, J.S. Kim, Heat transfer in neuron composite laminated phase-change drywall. Proc. Inst. Mech. Eng. Part A—J. Power Energy. 218(A2), 83–88 (2004)
30.
go back to reference J.S. Kim, K. Darkwa, Simulation of an integrated PCM–wallboard system. Int. J. Energy Res. 27(3), 215–223 (2003)CrossRef J.S. Kim, K. Darkwa, Simulation of an integrated PCM–wallboard system. Int. J. Energy Res. 27(3), 215–223 (2003)CrossRef
31.
go back to reference K. Darkwa, J.S. Kim, Dynamics of energy storage in phase change drywall systems. Int. J. Energy Res. 29(4), 335–343 (2005)CrossRef K. Darkwa, J.S. Kim, Dynamics of energy storage in phase change drywall systems. Int. J. Energy Res. 29(4), 335–343 (2005)CrossRef
32.
go back to reference I.O. Salyer, A.K. Sircar, Phase Change Material for Heating and Cooling of Residential Buildings and Other Applications. Proceedings of the 25th intersociety energy conservation engineering conference (1990), pp. 236–243 I.O. Salyer, A.K. Sircar, Phase Change Material for Heating and Cooling of Residential Buildings and Other Applications. Proceedings of the 25th intersociety energy conservation engineering conference (1990), pp. 236–243
33.
go back to reference D. Banu, D. Feldman, F. Haghighat, J. Paris, D. Hawes, Energy-storing wallboard: flammability tests. J. Mater. Civ. Eng. 10(2), 98–105 (1998)CrossRef D. Banu, D. Feldman, F. Haghighat, J. Paris, D. Hawes, Energy-storing wallboard: flammability tests. J. Mater. Civ. Eng. 10(2), 98–105 (1998)CrossRef
34.
go back to reference H. Kaasinen, Absorption of phase change substances into commonly used building materials. Sol. Energy Mater. Sol. Cells 27(2), 173–179 (1992)CrossRef H. Kaasinen, Absorption of phase change substances into commonly used building materials. Sol. Energy Mater. Sol. Cells 27(2), 173–179 (1992)CrossRef
35.
go back to reference D.W. Hawes, D. Feldman, Absorption of phase change materials in concrete. Sol. Energy Mater. Sol. Cells 27(2), 91–101 (1992)CrossRef D.W. Hawes, D. Feldman, Absorption of phase change materials in concrete. Sol. Energy Mater. Sol. Cells 27(2), 91–101 (1992)CrossRef
36.
go back to reference P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Microencapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 89(2–3), 297–306 (2005)CrossRef P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Microencapsulated phase-change materials integrated into construction materials. Sol. Energy Mater. Sol. Cells 89(2–3), 297–306 (2005)CrossRef
37.
go back to reference D.A. Neeper, Solar buildings research: what are the best directions? Passive Sol. 213–219 (1986) D.A. Neeper, Solar buildings research: what are the best directions? Passive Sol. 213–219 (1986)
38.
go back to reference I.M. Bugaje, Enhancing the thermal response of latent heat storage systems. Int. J. Energy Res. 21, 759–766 (1997)CrossRef I.M. Bugaje, Enhancing the thermal response of latent heat storage systems. Int. J. Energy Res. 21, 759–766 (1997)CrossRef
39.
go back to reference K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161–1176 (2003)CrossRef K. Boomsma, D. Poulikakos, F. Zwick, Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161–1176 (2003)CrossRef
40.
go back to reference Y. Tian, C.Y. Zhao, Heat Transfer Analysis for Phase Change Materials (PCMs). The 11th International Conference on Energy Storage (Effstock 2009), Stockholm, June 2009 Y. Tian, C.Y. Zhao, Heat Transfer Analysis for Phase Change Materials (PCMs). The 11th International Conference on Energy Storage (Effstock 2009), Stockholm, June 2009
41.
go back to reference C.Y. Zhao, W. Lu, Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol. Energy 84(8), 1402–1412 (2010)CrossRef C.Y. Zhao, W. Lu, Y. Tian, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol. Energy 84(8), 1402–1412 (2010)CrossRef
42.
go back to reference Y. Tian, C.Y. Zhao, Thermal Analysis in Phase Change Materials (PCMs) Embedded with Metal Foams. International Heat Transfer Conference-14, Washington, D. C., USA, 8–13 Aug 2010 Y. Tian, C.Y. Zhao, Thermal Analysis in Phase Change Materials (PCMs) Embedded with Metal Foams. International Heat Transfer Conference-14, Washington, D. C., USA, 8–13 Aug 2010
43.
go back to reference X. Py, R. Olives, S. Mauran, Paraffin/porous graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transf. 44, 2727–2737 (2001)CrossRef X. Py, R. Olives, S. Mauran, Paraffin/porous graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transf. 44, 2727–2737 (2001)CrossRef
44.
go back to reference J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. Int. J. Heat Mass Transf. 46, 4513–4525 (2003)CrossRef J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. Int. J. Heat Mass Transf. 46, 4513–4525 (2003)CrossRef
45.
go back to reference D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)CrossRef D.W. Hawes, D. Feldman, D. Banu, Latent heat storage in building materials. Energy Build. 20, 77–86 (1993)CrossRef
46.
go back to reference D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials 22, 231–242 (1991)CrossRef D. Feldman, D. Banu, D. Hawes, E. Ghanbari, Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Materials 22, 231–242 (1991)CrossRef
47.
go back to reference H.S. Ferreira, Os materiais de mudança de fase (pcm) no controlo das humidades ascen-sionais em elementos construtivos. Dissertação de mestrado, Faculdade de engenharia da universidade do porto-FEUP (2016) H.S. Ferreira, Os materiais de mudança de fase (pcm) no controlo das humidades ascen-sionais em elementos construtivos. Dissertação de mestrado, Faculdade de engenharia da universidade do porto-FEUP (2016)
48.
go back to reference Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)CrossRef Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build. Environ. 42, 2197–2209 (2007)CrossRef
49.
go back to reference A. Castell, I. Martorell, M. Medrano, G. Perez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 534–540 (2010) A. Castell, I. Martorell, M. Medrano, G. Perez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 534–540 (2010)
50.
go back to reference M. Zhang, A.M. Mario, B.K. Jennifer. Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. Int. J. Energy Res. 795–809 (2005) M. Zhang, A.M. Mario, B.K. Jennifer. Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. Int. J. Energy Res. 795–809 (2005)
51.
go back to reference M.N.A. Hawlader, M.S. Uddin, M.M. Khin. Microencapsulated PCM thermal-energy storage system. Appl. Energy 195–202 (2003) M.N.A. Hawlader, M.S. Uddin, M.M. Khin. Microencapsulated PCM thermal-energy storage system. Appl. Energy 195–202 (2003)
52.
go back to reference A.M. Khudhair, M.M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45(2), 263–275 (2004)CrossRef A.M. Khudhair, M.M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45(2), 263–275 (2004)CrossRef
53.
go back to reference L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of micro-encapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)CrossRef L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, R. Leppers, O. Zubillaga, Use of micro-encapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)CrossRef
54.
go back to reference Y.P. Zhang, K.P. Lin, R. Yang, H.F. Di, Y. Jiang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 1262–1269 (2006) Y.P. Zhang, K.P. Lin, R. Yang, H.F. Di, Y. Jiang, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 1262–1269 (2006)
55.
go back to reference G.B. Zhou, Y.P. Zhang, K.P. Lin, W. Xiao, Thermal analysis of a direct-gain room with shape- stabilized PCM plates. Renew. Energy. 1228–1236 (2008) G.B. Zhou, Y.P. Zhang, K.P. Lin, W. Xiao, Thermal analysis of a direct-gain room with shape- stabilized PCM plates. Renew. Energy. 1228–1236 (2008)
56.
go back to reference H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf. 307–312 (1997) H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf. 307–312 (1997)
57.
go back to reference M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity. Energy Conserv. Manage. 103–108 (2002) M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity. Energy Conserv. Manage. 103–108 (2002)
58.
go back to reference A. Sari, Form-stable paraffin/high density polyethylene composites as a solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Convers. Manage. 2033–2042 (2004) A. Sari, Form-stable paraffin/high density polyethylene composites as a solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Convers. Manage. 2033–2042 (2004)
59.
go back to reference H. Ye, X.S. Ge. Preparation of polyethylene-paraffin compound as a form-stable solid–liquid phase change material. Solar Energy Mat. Solar Cells. 37–44 (2000) H. Ye, X.S. Ge. Preparation of polyethylene-paraffin compound as a form-stable solid–liquid phase change material. Solar Energy Mat. Solar Cells. 37–44 (2000)
60.
go back to reference M. Xiao, B. Feng, K.C. Gong, Thermal performance of a high conductive shape-stabilized thermal storage material. Solar Energy Mat. Solar Cells. 293–296 (2001) M. Xiao, B. Feng, K.C. Gong, Thermal performance of a high conductive shape-stabilized thermal storage material. Solar Energy Mat. Solar Cells. 293–296 (2001)
61.
go back to reference Y.P. Zhang, K.P. Lin, Q.L. Zhang, H.F. Di, Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy Build. 38, 1164–1170 (2006)CrossRef Y.P. Zhang, K.P. Lin, Q.L. Zhang, H.F. Di, Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy Build. 38, 1164–1170 (2006)CrossRef
62.
go back to reference A. Castilho, Simulação numérica do efeito de PCM no comfort térmico de edifícios – caso de estudo da FEUP. M.Sc. Thesis, Faculdade de Engenharia da Universidade do Porto - FEUP, 2014. (in Portuguese) A. Castilho, Simulação numérica do efeito de PCM no comfort térmico de edifícios – caso de estudo da FEUP. M.Sc. Thesis, Faculdade de Engenharia da Universidade do Porto - FEUP, 2014. (in Portuguese)
63.
go back to reference J. Aguiar, S. Cunha, M. Kheradmand, Phase Change Materials: Contribute to Sustainable Construction (2014) J. Aguiar, S. Cunha, M. Kheradmand, Phase Change Materials: Contribute to Sustainable Construction (2014)
64.
go back to reference N. Zhu, Z. Ma, S. Wang, Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Convers. Manage. 50, 3169–3181 (2009)CrossRef N. Zhu, Z. Ma, S. Wang, Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Convers. Manage. 50, 3169–3181 (2009)CrossRef
65.
go back to reference E. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, J. Neila, Applications of phase change material in highly energy-efficient houses. Energy Build. 50, 49–62 (2012)CrossRef E. Rodriguez-Ubinas, L. Ruiz-Valero, S. Vega, J. Neila, Applications of phase change material in highly energy-efficient houses. Energy Build. 50, 49–62 (2012)CrossRef
66.
go back to reference N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 59, 82–103 (2013)CrossRef N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 59, 82–103 (2013)CrossRef
67.
go back to reference L.F. Cabeza, A. Castell, C. Barreneche, A. de Garcia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 1675–1695 (2011) L.F. Cabeza, A. Castell, C. Barreneche, A. de Garcia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 1675–1695 (2011)
Metadata
Title
Impregnation of PCMs in Building Materials
Authors
João M. P. Q. Delgado
Joana C. Martinho
Ana Vaz Sá
Ana S. Guimarães
Vitor Abrantes
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-97499-6_2