Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

06-06-2022

Improved Prediction Analysis with Hybrid Models for Thunderstorm Classification over the Ranchi Region

Authors: Kanchan Bala, Sanchita Paul, Sachi Nandan Mohanty, Satyasundara Mahapatra

Published in: New Generation Computing

Log in

Abstract

Thunderstorms are natural disasters that impact people, animals, and the economy. Thunderstorms’ detrimental repercussions can be avoided by identifying their occurrence in advance. The current work, in this respect, uses soft computing techniques such as K-Nearest Neighbour (KNN), Decision Tree (DT), Logistic Regression (LR), and Support Vector Machine (SVM) with various kernel functions to categorize the occurrence of thunderstorms over Ranchi, India. These techniques were trained and tested using two data sets: daily average and hourly meteorological datasets. The primary purpose of this study is to find which dataset-classifier combination is optimal for categorizing thunderstorm occurrence in Ranchi. No classifier was found to adequately classify either the Day Average Dataset or the Modified Day Average Dataset. On the other hand, the Hourly Dataset was found to be more balanced in terms of the number of thunderstorms that occurred than the Day Average and Modified Average datasets. The F-Score value of the incidence of thunderstorm incidents after using different classifiers was used to compare the outcomes of these datasets. The results reveal that using SVM with radial basis function. The Hourly Dataset is the best for thunderstorm day classification. For the overall and only incidence of thunderstorms classes, SVM-RBF gets 0.81 and 0.74 F-Scores, respectively. Other approaches, like grid search and Bagging, have been used to increase SVM-RBF performance. Grid search and Bagging are used on SVM-RBF to produce a hybrid Grid-Bag-SVM-RBF classifier with 82.04% accuracy and F-scores of 0.83 and 0.78 for overall and just thunderstorm occurrence, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Litta, A.J., Idicula, S.M., Francis, C.N.: Artificial neural network for the prediction of thunderstorms over Kolkata. In. J. Comput. Appl. 50(11), 50–55 (2012) Litta, A.J., Idicula, S.M., Francis, C.N.: Artificial neural network for the prediction of thunderstorms over Kolkata. In. J. Comput. Appl. 50(11), 50–55 (2012)
2.
go back to reference Wilks, D.S.: International variability and extreme value characteristics of severe stochastics daily precipitation. Agric. For. Meteorol. 93, 153–169 (1999) CrossRef Wilks, D.S.: International variability and extreme value characteristics of severe stochastics daily precipitation. Agric. For. Meteorol. 93, 153–169 (1999) CrossRef
3.
go back to reference Litta, A.J., Indicula, S.M., Mohanty, U.C.: Artificial neural network model in prediction of meteorological parameters during pre-monsoon thunderstorms. Int. J. Atmos. Sci. 2013, 1–14 (2013) Litta, A.J., Indicula, S.M., Mohanty, U.C.: Artificial neural network model in prediction of meteorological parameters during pre-monsoon thunderstorms. Int. J. Atmos. Sci. 2013, 1–14 (2013)
4.
go back to reference Saha, U., Maitra, A., Midya, S.K., Das, G.K.: Association of thunderstorm frequency with rainfall occurrences over an Indian urban metropolis. Atmos. Res. 138, 240–252 (2014) CrossRef Saha, U., Maitra, A., Midya, S.K., Das, G.K.: Association of thunderstorm frequency with rainfall occurrences over an Indian urban metropolis. Atmos. Res. 138, 240–252 (2014) CrossRef
6.
go back to reference Chaudhuri, S.: Preferred type of cloud in the genesis of severe thunderstorms—a soft computing approach. Atmos. Res. 88(2), 149–156 (2008) CrossRef Chaudhuri, S.: Preferred type of cloud in the genesis of severe thunderstorms—a soft computing approach. Atmos. Res. 88(2), 149–156 (2008) CrossRef
7.
go back to reference Webb. R., King, P.: Forecasting thunderstorm and severe thunderstorm using computer models. In: 15th Annual Workshop of Bureau of Meteorology Research Center (BMRC) Modelling Workshop, (2003). Webb. R., King, P.: Forecasting thunderstorm and severe thunderstorm using computer models. In: 15th Annual Workshop of Bureau of Meteorology Research Center (BMRC) Modelling Workshop, (2003).
8.
go back to reference Colquhoun, J.R.: A decision tree method of forecasting thunderstorms, severe thunderstorms, and tornadoes. Weather and Forecast. 2(4), 337–345 (1987) CrossRef Colquhoun, J.R.: A decision tree method of forecasting thunderstorms, severe thunderstorms, and tornadoes. Weather and Forecast. 2(4), 337–345 (1987) CrossRef
9.
go back to reference Chaudhuri, S.: A Probe for Consistency in CAPE and CINE during the prevalence of severe thunderstorms: statistical-fuzzy coupled approach. Atmos. Clim. Sci. 4(1), 197–205 (2011) Chaudhuri, S.: A Probe for Consistency in CAPE and CINE during the prevalence of severe thunderstorms: statistical-fuzzy coupled approach. Atmos. Clim. Sci. 4(1), 197–205 (2011)
10.
go back to reference Basak, P., Sarkar, D., Mukhopadhyay, A.K.: Estimation of thunderstorm days from the radio-sonde observations at Kolkata (22.530 N, 88.330 E), India during pre-monsoon season: an ANN based approach. Open Access E-J. Earth Sci. India 5(IV), 139–151 (2012) Basak, P., Sarkar, D., Mukhopadhyay, A.K.: Estimation of thunderstorm days from the radio-sonde observations at Kolkata (22.530 N, 88.330 E), India during pre-monsoon season: an ANN based approach. Open Access E-J. Earth Sci. India 5(IV), 139–151 (2012)
11.
go back to reference Chakrabarty, H., Murthy, C.A., Gupta, D.A.: Application of pattern recognition techniques to predict severe thunderstorms. Int. J. Comput. Theor. Eng. 5(6), 850–855 (2013) CrossRef Chakrabarty, H., Murthy, C.A., Gupta, D.A.: Application of pattern recognition techniques to predict severe thunderstorms. Int. J. Comput. Theor. Eng. 5(6), 850–855 (2013) CrossRef
12.
go back to reference Putra, A. W., Lursinsap, C.: Cumulonimbus prediction using artificial neural network backpropagation with radiosonde indices. 153–165 (2014) Putra, A. W., Lursinsap, C.: Cumulonimbus prediction using artificial neural network backpropagation with radiosonde indices. 153–165 (2014)
13.
go back to reference Cintineo, J. L., Pavolonis, M. J., Sieglaff, J. M., Lindsey, D. T.: Probabilistic nowcasting of severe convection. In: National Weather Association Annual Meeting, Madison, WI, Seminar Nasional Penginderaan Jauh F18.1, (2012). Cintineo, J. L., Pavolonis, M. J., Sieglaff, J. M., Lindsey, D. T.: Probabilistic nowcasting of severe convection. In: National Weather Association Annual Meeting, Madison, WI, Seminar Nasional Penginderaan Jauh F18.1, (2012).
14.
go back to reference Ping, L., Tao-rong, Q., Yu-yuan, L.: The Study on the model of thunderstorm forecast based on RS-SVM. J. Converg. Inf. Technol. 8(10), 66–74 (2013) Ping, L., Tao-rong, Q., Yu-yuan, L.: The Study on the model of thunderstorm forecast based on RS-SVM. J. Converg. Inf. Technol. 8(10), 66–74 (2013)
15.
go back to reference Bala, K., Choubey, D.K., Paul, S.: Soft computing and data mining techniques for thunderstorms and lightning prediction: a survey. In: International Conference on Electronics and Aerospace Technology (ICECA) Coimbatore, IEEE, pp. 42–46 (2017). Bala, K., Choubey, D.K., Paul, S.: Soft computing and data mining techniques for thunderstorms and lightning prediction: a survey. In: International Conference on Electronics and Aerospace Technology (ICECA) Coimbatore, IEEE, pp. 42–46 (2017).
16.
go back to reference Choubey, D.K., Paul, S.: GA_MLP NN: a hybrid intelligent system for diabetes disease diagnosis. Int. J. Intell. Syst. Appl. (IJISA) MECS. 8, 49–59 (2016) Choubey, D.K., Paul, S.: GA_MLP NN: a hybrid intelligent system for diabetes disease diagnosis. Int. J. Intell. Syst. Appl. (IJISA) MECS. 8, 49–59 (2016)
17.
go back to reference Choubey, D.K., Paul, S.: GA_RBF NN: a classification system for diabetes. Int. J. Biomed. Eng. Technol. (IJBET), Indersci. 23(1), 71–93 (2017) CrossRef Choubey, D.K., Paul, S.: GA_RBF NN: a classification system for diabetes. Int. J. Biomed. Eng. Technol. (IJBET), Indersci. 23(1), 71–93 (2017) CrossRef
18.
go back to reference Choubey, D.K., Paul, S.: GA_SVM—a classification system for diagnosis of diabetes. In: Handbook of research on nature inspired soft computing and algorithms, pp. 359–397. IGI Global, Hershey (2017) CrossRef Choubey, D.K., Paul, S.: GA_SVM—a classification system for diagnosis of diabetes. In: Handbook of research on nature inspired soft computing and algorithms, pp. 359–397. IGI Global, Hershey (2017) CrossRef
19.
go back to reference Chatterjee, D., Chakrabarty, H.: Application of machine learning technique to predict severe thunderstorms using upper air data. Int. J. Sci. Eng. Res. 6(7), 1527–1530 (2015) Chatterjee, D., Chakrabarty, H.: Application of machine learning technique to predict severe thunderstorms using upper air data. Int. J. Sci. Eng. Res. 6(7), 1527–1530 (2015)
20.
go back to reference Chakrabarty, H., Bhattacharya, S.: Prediction of severe thunderstorms applying neural network using RSRW data. Int. J. Comput. Appl. 89(16), 1–5 (2014) Chakrabarty, H., Bhattacharya, S.: Prediction of severe thunderstorms applying neural network using RSRW data. Int. J. Comput. Appl. 89(16), 1–5 (2014)
21.
go back to reference Fix, E., Hodges, J.L., Jr.: Discriminatory analysis-nonparametric discrimination: consistency properties. In: Technical report. California University, Berkeley (1951) Fix, E., Hodges, J.L., Jr.: Discriminatory analysis-nonparametric discrimination: consistency properties. In: Technical report. California University, Berkeley (1951)
22.
go back to reference Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Information. Theory 13(1), 21–27 (1967) CrossRef Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Information. Theory 13(1), 21–27 (1967) CrossRef
23.
go back to reference Kataria, A., Singh, M.D.: A review of data classification using K-nearest neighbor algorithm. Int. J. Emerg. Technol. Adv. Eng. 3(6), 354–360 (2013) Kataria, A., Singh, M.D.: A review of data classification using K-nearest neighbor algorithm. Int. J. Emerg. Technol. Adv. Eng. 3(6), 354–360 (2013)
24.
go back to reference Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008) CrossRef Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008) CrossRef
25.
go back to reference Bhatia, N., Vandana: Survey of nearest neighbor techniques. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 8(2), 302–305 (2010) Bhatia, N., Vandana: Survey of nearest neighbor techniques. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 8(2), 302–305 (2010)
26.
go back to reference Yang, Y., Ault, T., Pierce, T., Lattimer, C. W.: Improving text categorization methods for event tracking. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 65–72, (2000). Yang, Y., Ault, T., Pierce, T., Lattimer, C. W.: Improving text categorization methods for event tracking. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 65–72, (2000).
27.
go back to reference Xiubo, G., Tie-Yan, L., Qin, T., Andrew, A., Li, H., Shum, H. Y.: Query dependent ranking using k-nearest neighbor. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–122 (2008). Xiubo, G., Tie-Yan, L., Qin, T., Andrew, A., Li, H., Shum, H. Y.: Query dependent ranking using k-nearest neighbor. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–122 (2008).
28.
go back to reference Xu, S., Wu, Y.: An algorithm for remote sensing image classification based on artificial immune B-cell network. The Int. Arch. Photogram. Remote Sensing Spat. Inf. Sci. 37, 107–112 (2008) Xu, S., Wu, Y.: An algorithm for remote sensing image classification based on artificial immune B-cell network. The Int. Arch. Photogram. Remote Sensing Spat. Inf. Sci. 37, 107–112 (2008)
29.
go back to reference Song, Y.Y., Lu, Y.: Decision tree method: application for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130–135 (2015) Song, Y.Y., Lu, Y.: Decision tree method: application for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130–135 (2015)
30.
go back to reference Dasgupta, S., De, U.K.: A logistic regression model for prediction of pre-monsoon convective development over Kolkata. Indian J. Radio Space Phys. 33, 251–255 (2004) Dasgupta, S., De, U.K.: A logistic regression model for prediction of pre-monsoon convective development over Kolkata. Indian J. Radio Space Phys. 33, 251–255 (2004)
32.
go back to reference Syarif, W., Prugel-Bennett, A., Wills, G.: SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA 14(4), 1502–1509 (2016) CrossRef Syarif, W., Prugel-Bennett, A., Wills, G.: SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA 14(4), 1502–1509 (2016) CrossRef
33.
go back to reference Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996) MATH Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996) MATH
34.
go back to reference Bajramovic, F., Mattern, F., Butko, N., Denzler, J.: A comparison of nearest neighbor search algorithms for generic object recognition. Adv. Concepts Intell. Vision Syst. Springer, (LNCS) 4179, 1186–1197 (2006) CrossRef Bajramovic, F., Mattern, F., Butko, N., Denzler, J.: A comparison of nearest neighbor search algorithms for generic object recognition. Adv. Concepts Intell. Vision Syst. Springer, (LNCS) 4179, 1186–1197 (2006) CrossRef
37.
go back to reference Abdellatif, S., Hassine, M. A. B., Yahia, S. B., Bouzeghoub, A.: ARCID: a new approach to deal with imbalanced datasets classification. In: SOFSEM 2018: theory and practice of computer science. SOFSEM 2018. Lecture Notes in Computer Science vol. 10706, (2018). Abdellatif, S., Hassine, M. A. B., Yahia, S. B., Bouzeghoub, A.: ARCID: a new approach to deal with imbalanced datasets classification. In: SOFSEM 2018: theory and practice of computer science. SOFSEM 2018. Lecture Notes in Computer Science vol. 10706, (2018).
41.
go back to reference Zhou, K., Zheng, Y., Li, B., Dong, W., Zhang, X.: Forecasting different types of convective weather: a deep learning approach. J. Meteorol.l Res. 33, 797–809 (2019) CrossRef Zhou, K., Zheng, Y., Li, B., Dong, W., Zhang, X.: Forecasting different types of convective weather: a deep learning approach. J. Meteorol.l Res. 33, 797–809 (2019) CrossRef
42.
go back to reference Bala, K., Paul, S., Ghosh, M.: Heuristic model to compute indices for classification of incidence of thunderstorms over ranchi with atmospheric parameter. IEEE Access 9, 127086–127101 (2021) CrossRef Bala, K., Paul, S., Ghosh, M.: Heuristic model to compute indices for classification of incidence of thunderstorms over ranchi with atmospheric parameter. IEEE Access 9, 127086–127101 (2021) CrossRef
Metadata
Title
Improved Prediction Analysis with Hybrid Models for Thunderstorm Classification over the Ranchi Region
Authors
Kanchan Bala
Sanchita Paul
Sachi Nandan Mohanty
Satyasundara Mahapatra
Publication date
06-06-2022
Publisher
Ohmsha
Published in
New Generation Computing
Print ISSN: 0288-3635
Electronic ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-022-00174-2

Premium Partner