Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-07-2014 | Methodologies and Application | Issue 7/2014

Soft Computing 7/2014

Improved RM-MEDA with local learning

Journal:
Soft Computing > Issue 7/2014
Authors:
Yangyang Li, Xia Xu, Peidao Li, Licheng Jiao
Important notes
Communicated by Y.-S. Ong.

Abstract

In this paper, local learning is proposed to improve the speed and the accuracy of convergence performance of regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA), a typical multi-objective optimization algorithm via estimation of distribution. RM-MEDA employs a model-based method to generate new solutions, however, this method is easy to generate poor solutions when the population has no obvious regularity. To overcome this drawback, our proposed method add a new solution generation strategy, local learning, to the original RM-MEDA. Local learning produces solutions by sampling some solutions from the neighborhood of elitist solutions in the parent population. As it is easy to search some promising solutions in the neighborhood of an elitist solution, local learning can get some useful solutions which help the population attain a fast and accurate convergence. The experimental results on a set of test instances with variable linkages show that the implement of local learning can accelerate convergence speed and add a more accurate convergence to the Pareto optimal.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2014

Soft Computing 7/2014 Go to the issue

Premium Partner

    Image Credits