Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

08-02-2022

Improved RSS Based Distance Estimation for Autonomous Vehicles

Authors: Gokce Hacioglu, Erhan Sesli

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Autonomous vehicles are going to be used in warehouses or logistic centers more frequently in near future. The location information is vital for autonomous vehicles to accomplish tasks that are assigned to them. This study presents a wireless sensor network to be used in location estimation of autonomous vehicles. The autonomous vehicles estimate their distance to a specific node called as reference anchor node. The aim of the proposed method is to be able get more accurate distance estimations by received signal strength for autonomous vehicles. The proposed wireless sensor network provides sufficient information to the autonomous vehicles to reduce their received signal strength based estimation error. An adaptive filter based algorithm to reduce estimation error is proposed. The performance of the proposed method is validated by simulations and experiments. According to results of the simulations where ideal conditions are provided, maximum error of the proposed method is 0.81m. According to results of the experiments, the average absolute error of the proposed method can be as low as 1.272m. When the proposed method is compared with k-nearest neighbor distance estimation and conventional approach, it has a significantly lower error than them.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Durrant-Whyte, H., Pagac, D., Rogers, B., et al. (2007). An autonomous straddle carrier for movement of shipping containers. IEEE Robotics and Automation Magazine, 14(3), 14–24.CrossRef Durrant-Whyte, H., Pagac, D., Rogers, B., et al. (2007). An autonomous straddle carrier for movement of shipping containers. IEEE Robotics and Automation Magazine, 14(3), 14–24.CrossRef
2.
go back to reference Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231–249.CrossRef Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231–249.CrossRef
3.
go back to reference Milanés, V., Naranjo, J. E., González, C., Alonso, J., & de Pedro, T. (2008). Autonomous vehicle based in cooperative GPS and inertial systems. Robotica, 26(5), 627–633.CrossRef Milanés, V., Naranjo, J. E., González, C., Alonso, J., & de Pedro, T. (2008). Autonomous vehicle based in cooperative GPS and inertial systems. Robotica, 26(5), 627–633.CrossRef
4.
go back to reference Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.CrossRef Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.CrossRef
5.
go back to reference Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22(4), 269–280.CrossRef Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22(4), 269–280.CrossRef
6.
go back to reference Gao, Y., Liu, S., Atia, M., & Noureldin, A. (2015). INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 15(9), 23286–23302.CrossRef Gao, Y., Liu, S., Atia, M., & Noureldin, A. (2015). INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 15(9), 23286–23302.CrossRef
7.
go back to reference Aldibaja, M., Suganuma, N., & Yoneda, K. (2017). Robust intensity-based localization method for autonomous driving on snow-wet road surface. IEEE Transactions on Industrial Informatics, 13(5), 2369–2378.CrossRef Aldibaja, M., Suganuma, N., & Yoneda, K. (2017). Robust intensity-based localization method for autonomous driving on snow-wet road surface. IEEE Transactions on Industrial Informatics, 13(5), 2369–2378.CrossRef
8.
go back to reference Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors, 17(9), 2140.CrossRef Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors, 17(9), 2140.CrossRef
9.
go back to reference Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.CrossRef Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.CrossRef
10.
go back to reference Hata, A. Y., & Wolf, D. F. (2015). Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Transactions on Intelligent Transportation Systems, 17(2), 420–429.CrossRef Hata, A. Y., & Wolf, D. F. (2015). Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Transactions on Intelligent Transportation Systems, 17(2), 420–429.CrossRef
11.
12.
go back to reference Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.CrossRef Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.CrossRef
13.
go back to reference Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.CrossRef Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.CrossRef
14.
go back to reference Phoemphon, S., So-In, C., & Niyato, D. T. (2018). A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Applied Soft Computing, 65, 101–120.CrossRef Phoemphon, S., So-In, C., & Niyato, D. T. (2018). A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Applied Soft Computing, 65, 101–120.CrossRef
15.
go back to reference Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight. Sensors, 19(14), 3242.CrossRef Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight. Sensors, 19(14), 3242.CrossRef
16.
go back to reference Phoemphon, S., So-In, C., & Leelathakul, N. (2020). A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Systems with Applications, 143, 113044.CrossRef Phoemphon, S., So-In, C., & Leelathakul, N. (2020). A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Systems with Applications, 143, 113044.CrossRef
17.
go back to reference Bekcibasi, U., & Tenruh, M. (2014). Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytechnica Hungarica, 11(8), 103–120. Bekcibasi, U., & Tenruh, M. (2014). Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytechnica Hungarica, 11(8), 103–120.
18.
go back to reference Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing. Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing.
19.
go back to reference Goldoni, E., Savioli, A., Risi, M., & Gamba, P. (2010). Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In European Wireless Conference (EW). Goldoni, E., Savioli, A., Risi, M., & Gamba, P. (2010). Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In European Wireless Conference (EW).
20.
go back to reference Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks. In IEEE Fifth international conference on wireless communication and sensor networks (WCSN). Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks. In IEEE Fifth international conference on wireless communication and sensor networks (WCSN).
21.
go back to reference Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In IEEE international conference on Industrial technology (ICIT). Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In IEEE international conference on Industrial technology (ICIT).
22.
go back to reference Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.CrossRef Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.CrossRef
23.
go back to reference Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef
24.
go back to reference Bachrach, J. & Taylor, C. (2005). Handbook of sensor networks: Algorithms and architectures. In I. Stojmenovic (Ed.), New Jersey: Wiley. (Chapter 9). Bachrach, J. & Taylor, C. (2005). Handbook of sensor networks: Algorithms and architectures. In I. Stojmenovic (Ed.), New Jersey: Wiley. (Chapter 9).
25.
go back to reference Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In 15th International Conference on Systems, Signals and Image Processing. Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In 15th International Conference on Systems, Signals and Image Processing.
26.
go back to reference URL1, Texas Intruments, Texas, US. CC2538 (datasheet). 33 pages. [Online] Cited 2018-01-20. Available at: http://www.ti.com/lit/ds/symlink/cc2538.pdf URL1, Texas Intruments, Texas, US. CC2538 (datasheet). 33 pages. [Online] Cited 2018-01-20. Available at: http://​www.​ti.​com/​lit/​ds/​symlink/​cc2538.​pdf
27.
go back to reference Willis, S. L., & Kikkert, C. J. (2005). Radio propagation model for long-range ad hoc wireless sensor network. In International conference on wireless networks, communications and mobile computing. Willis, S. L., & Kikkert, C. J. (2005). Radio propagation model for long-range ad hoc wireless sensor network. In International conference on wireless networks, communications and mobile computing.
28.
go back to reference Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.CrossRef Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.CrossRef
29.
go back to reference Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., ... & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802, 15(4), 662. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., ... & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802, 15(4), 662.
30.
go back to reference Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef
31.
go back to reference Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef
32.
go back to reference Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.CrossRef Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.CrossRef
33.
go back to reference Sari, R., & Zayyani, H. (2018). RSS localization using unknown statistical path loss exponent model. IEEE Communications Letters, 22(9), 1830–1833.CrossRef Sari, R., & Zayyani, H. (2018). RSS localization using unknown statistical path loss exponent model. IEEE Communications Letters, 22(9), 1830–1833.CrossRef
34.
go back to reference Cama-Pinto, A., Pineres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7), 1550147717722691.CrossRef Cama-Pinto, A., Pineres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7), 1550147717722691.CrossRef
35.
go back to reference Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2010). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.CrossRef Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2010). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.CrossRef
36.
go back to reference Akhtar, N., Ergen, S. C., & Ozkasap, O. (2014). Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation. IEEE Transactions on Vehicular Technology, 64(1), 248–262.CrossRef Akhtar, N., Ergen, S. C., & Ozkasap, O. (2014). Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation. IEEE Transactions on Vehicular Technology, 64(1), 248–262.CrossRef
37.
go back to reference Dang, X., Hei, Y., & Hao, Z. (2016). An improved indoor localization based on RSSI and feedback correction of anchor node for WSN. In International conference on computer, information and telecommunication systems (CITS). Dang, X., Hei, Y., & Hao, Z. (2016). An improved indoor localization based on RSSI and feedback correction of anchor node for WSN. In International conference on computer, information and telecommunication systems (CITS).
38.
go back to reference Singh, A. P., Singh, D. P., & Kumar, S. (2015). NRSSI: new proposed RSSI method for the distance measurement in WSNs. In 1st International conference on next generation computing technologies (NGCT). Singh, A. P., Singh, D. P., & Kumar, S. (2015). NRSSI: new proposed RSSI method for the distance measurement in WSNs. In 1st International conference on next generation computing technologies (NGCT).
39.
go back to reference Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6. Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6.
40.
go back to reference Xiao, Z., Wen, H., Markham, A., Trigoni, N., Blunsom, P., & Frolik, J. (2015). Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications, 14(3), 1689–1702.CrossRef Xiao, Z., Wen, H., Markham, A., Trigoni, N., Blunsom, P., & Frolik, J. (2015). Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications, 14(3), 1689–1702.CrossRef
41.
go back to reference He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490.CrossRef He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490.CrossRef
42.
go back to reference Li, D., Zhang, B., & Li, C. (2016). A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet of Things Journal, 3(4), 590–597.CrossRef Li, D., Zhang, B., & Li, C. (2016). A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet of Things Journal, 3(4), 590–597.CrossRef
43.
go back to reference Luo, R. C., & Hsiao, T. J. (2019). Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Transactions on Industrial Electronics, 66(3), 1940–1951.CrossRef Luo, R. C., & Hsiao, T. J. (2019). Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Transactions on Industrial Electronics, 66(3), 1940–1951.CrossRef
44.
go back to reference Closas, P., Fernandez-Prades, C., & Fernandez-Rubio, J. A. (2009). Cramér-Rao bound analysis of positioning approaches in GNSS receivers. IEEE Transactions on Signal Processing, 57(10), 3775–3786.MathSciNetCrossRef Closas, P., Fernandez-Prades, C., & Fernandez-Rubio, J. A. (2009). Cramér-Rao bound analysis of positioning approaches in GNSS receivers. IEEE Transactions on Signal Processing, 57(10), 3775–3786.MathSciNetCrossRef
45.
go back to reference Zhao, Y., Yang, Y., & Kyas, M. (2014). Cramér-rao lower bound analysis for wireless localization systems using priori information. In 11th Workshop on positioning, navigation and communication (WPNC). Zhao, Y., Yang, Y., & Kyas, M. (2014). Cramér-rao lower bound analysis for wireless localization systems using priori information. In 11th Workshop on positioning, navigation and communication (WPNC).
46.
go back to reference Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernandez, P., Lago, F. A., Garcia, E., & Abril, E. J. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.CrossRef Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernandez, P., Lago, F. A., Garcia, E., & Abril, E. J. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.CrossRef
47.
go back to reference Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Burlington, MA (USA): Academic Press.CrossRef Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Burlington, MA (USA): Academic Press.CrossRef
48.
go back to reference URL2, Texas Instruments, Texas, US. CC2538-CC2592 Evaluation Module Kit Quick Start Guide (datasheet). 3 pages. [Online] Cited 2018-03-28. Available at: http://www.ti.com/lit/ml/swru363/swru363.pdf URL2, Texas Instruments, Texas, US. CC2538-CC2592 Evaluation Module Kit Quick Start Guide (datasheet). 3 pages. [Online] Cited 2018-03-28. Available at: http://​www.​ti.​com/​lit/​ml/​swru363/​swru363.​pdf
49.
go back to reference Suman, K. D., & Pasan, M. K. (2016). Design and methodology of automated guided vehicle-a review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 29–36. Suman, K. D., & Pasan, M. K. (2016). Design and methodology of automated guided vehicle-a review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 29–36.
50.
go back to reference Nelson, W. L., & Cox, I. J. (1990). Local path control for an autonomous vehicle. In CoxGordon I. In & J. & Wilfong G.T. (Eds.), Autonomous robot vehicles. New York: Springer. Nelson, W. L., & Cox, I. J. (1990). Local path control for an autonomous vehicle. In CoxGordon I. In & J. & Wilfong G.T. (Eds.), Autonomous robot vehicles. New York: Springer.
51.
go back to reference Ye, C., Jiang, X., Yu, S., & Jiang, C. (2016). A tracking method of an assembling Omni-directional mobile robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO). Ye, C., Jiang, X., Yu, S., & Jiang, C. (2016). A tracking method of an assembling Omni-directional mobile robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO).
Metadata
Title
Improved RSS Based Distance Estimation for Autonomous Vehicles
Authors
Gokce Hacioglu
Erhan Sesli
Publication date
08-02-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09552-x

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue