Skip to main content
Top
Published in: Measurement Techniques 6/2020

27-10-2020 | THERMOPHYSICAL MEASUREMENTS

Improvement of Methods and Means for the Verification and Calibration of Thermal Imagers

Authors: V. V. Gerasyutenko, A. V. Sharkov, V. A. Korablev, D. A. Minkin

Published in: Measurement Techniques | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a verification and calibration method for thermal imagers that consists in comparing temperature readings obtained by contact- and thermal imaging methods. In order to confirm the reliability of the proposed method, an experimental setup was developed, whose main element comprises an emitting surface in the form of a 330 × 200 × 4 mm rectangular plate covered with paint having an emissivity factor not less than 0.96. The paper presents the results of temperature field calculations on the plate’s emitting surface. The temperature field of the plate’s emitting surface was determined by the contact method using chromel-alumel thermocouples, as well as the thermal imaging method. As a result of the obtained temperature values analysis, it is concluded that the heat exchange of the plate with the ambient air starts to play a significant role when the temperature of the emitting surface approaches 50°C. Therefore, air heaters were applied in order to reduce the dissipation of heat from the emitting surface into the environment. These heaters are two aluminum-magnesium alloy plates attached to the end face of the emitting surface. The metal heat exchanger coils are installed on the surfaces of the plates and connected by hoses to the liquid thermostat. One of the plates heats the air flowing around the emitting surface, while the other prevents the thermal emission into the environment. As a result of the application of the heaters, the heat exchange intensity of the radiating surface of the plate with the environment decreases. Recommendations about the choice of heater sizes are given. The main advantages of the proposed method are the following: ensuring high isothermicity of the emitting surface throughout the thickness of the plate; accuracy of the temperature maintaining at a given level; reducing the transition time of the device to a steady-state regime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. V. Gogolinskii and Yu. A. Sil’d, “Metrological assurance of thermal NDT instruments: measuring thermal imagers and pyrometers,” V Mire Nerazrush. Kontr., No. 1 (20), 21–25 (2017). K. V. Gogolinskii and Yu. A. Sil’d, “Metrological assurance of thermal NDT instruments: measuring thermal imagers and pyrometers,” V Mire Nerazrush. Kontr., No. 1 (20), 21–25 (2017).
2.
go back to reference S. P. Volkov and V. A. Nikonenko, “Metrological assurance of non-contact temperature measuring instruments,” Kontrol Diagn., No. 8, 63–70 (2007). S. P. Volkov and V. A. Nikonenko, “Metrological assurance of non-contact temperature measuring instruments,” Kontrol Diagn., No. 8, 63–70 (2007).
3.
go back to reference Yu. A. Sil’d, M. A. Ivanova, and V. A. Nikonenko, “Development of a system for metrological assurance of measuring thermal imaging devices,” Izmer. Tekhn., No. 4, 48–51 (2004). Yu. A. Sil’d, M. A. Ivanova, and V. A. Nikonenko, “Development of a system for metrological assurance of measuring thermal imaging devices,” Izmer. Tekhn., No. 4, 48–51 (2004).
4.
go back to reference Yu. A. Sil’d, M. S. Matveev, A. I. Pokhodun, and E. V. Vizulainen, “New VNIIM radiator for the metrological assurance of radiation thermometry,” Pribory, No. 10 (100), 46–52 (2008). Yu. A. Sil’d, M. S. Matveev, A. I. Pokhodun, and E. V. Vizulainen, “New VNIIM radiator for the metrological assurance of radiation thermometry,” Pribory, No. 10 (100), 46–52 (2008).
5.
go back to reference K. A. Sharganov, Yu. A. Sil’d, and E. V. Vizulainen, “Non-contact method for reproducing, storing and transferring a temperature unit,” Vestn. Metrol., No. 2, 19–22 (2017). K. A. Sharganov, Yu. A. Sil’d, and E. V. Vizulainen, “Non-contact method for reproducing, storing and transferring a temperature unit,” Vestn. Metrol., No. 2, 19–22 (2017).
11.
go back to reference V. A. Korablev, D. A. Minkin, and A. V. Sharkov, “Provision of isothermal conditions at the radiator of the device for calibrating thermal imagers,” Prir. Tekhnog. Riski (fiz.-mat. priklad. aspekty), No. 3 (11), 42–50 (2014). V. A. Korablev, D. A. Minkin, and A. V. Sharkov, “Provision of isothermal conditions at the radiator of the device for calibrating thermal imagers,” Prir. Tekhnog. Riski (fiz.-mat. priklad. aspekty), No. 3 (11), 42–50 (2014).
12.
go back to reference V. A. Korablev, A. V. Sharkov, and D. A. Minkin, “Methods for equalizing the temperature field of a vertical heat-emitting plate.” Prir. Tekhnog. Riski. (fiz.-mat. priklad. aspekty), No. 2 (18), 42–46 (2016). V. A. Korablev, A. V. Sharkov, and D. A. Minkin, “Methods for equalizing the temperature field of a vertical heat-emitting plate.” Prir. Tekhnog. Riski. (fiz.-mat. priklad. aspekty), No. 2 (18), 42–46 (2016).
13.
go back to reference V. A. Korablev, A. V. Sharkov, and D. A. Minkin, “Method for generating a uniform temperature field of the cooled surface with the forced coolant movement,” Probl. Upravl. Risk. Tekhnosf., No. 4(36), 43–49 (2015). V. A. Korablev, A. V. Sharkov, and D. A. Minkin, “Method for generating a uniform temperature field of the cooled surface with the forced coolant movement,” Probl. Upravl. Risk. Tekhnosf., No. 4(36), 43–49 (2015).
14.
go back to reference V. E. Mosharov, V. N. Radchenko, and I. V. Senyuev, “Measurement of heat fluxes using a thermal imager," in: Proc. 29th Sci. Techn. Conf. on Aerodynamics, Zhukovsky, March 1–2, 2018, TsAGI (2018). V. E. Mosharov, V. N. Radchenko, and I. V. Senyuev, “Measurement of heat fluxes using a thermal imager," in: Proc. 29th Sci. Techn. Conf. on Aerodynamics, Zhukovsky, March 1–2, 2018, TsAGI (2018).
15.
go back to reference G. Gaussorgues, Infrared Thermography. Foundations, Technology, Applications [Russian translation], Mir, Moscow (1988). G. Gaussorgues, Infrared Thermography. Foundations, Technology, Applications [Russian translation], Mir, Moscow (1988).
16.
go back to reference G. N. Dul’nev and S. V. Tikhonov, Basic Theory of Heat-and-Mass Transfer, ITMO, St. Petersburg (2010). G. N. Dul’nev and S. V. Tikhonov, Basic Theory of Heat-and-Mass Transfer, ITMO, St. Petersburg (2010).
17.
go back to reference M. A. Mikheev and I. M. Mikheeva, Basics of Heat Transfer, BASTET, Мoscow (2010). M. A. Mikheev and I. M. Mikheeva, Basics of Heat Transfer, BASTET, Мoscow (2010).
18.
go back to reference V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer, Energoizdat, Moscow, (1981). V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer, Energoizdat, Moscow, (1981).
19.
go back to reference O. G. Martynenko and Yu. A. Sokovishin, Free-Convective Heat Transfer on a Vertical Surface. Boundary Conditions of the 2nd Kind, Nauka i Tekhnika, Minsk (1977). O. G. Martynenko and Yu. A. Sokovishin, Free-Convective Heat Transfer on a Vertical Surface. Boundary Conditions of the 2nd Kind, Nauka i Tekhnika, Minsk (1977).
Metadata
Title
Improvement of Methods and Means for the Verification and Calibration of Thermal Imagers
Authors
V. V. Gerasyutenko
A. V. Sharkov
V. A. Korablev
D. A. Minkin
Publication date
27-10-2020
Publisher
Springer US
Published in
Measurement Techniques / Issue 6/2020
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01809-w

Other articles of this Issue 6/2020

Measurement Techniques 6/2020 Go to the issue