Skip to main content
Top
Published in:

01-12-2016 | Original Article

Improving collaborative recommendations using vector quantization and clustering

Authors: Farsad Zamani Boroujeni, Mohammad Behnia, Simindokht Jahangard

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Internet provides its users with a wide variety of resources. However, the huge volume of data makes finding relevant data a difficult task for the users. By using item filtering algorithms, the recommendation systems can effectively offer several items similar to what users search for. However, most of the existing algorithms do not consider the impact of item features in calculating the similarity between users. To overcome this problem, a new method based on vector quantization and clustering is presented here. The proposed method uses features of the items as weighting factors to calculate a vector of user rates instead of a single value for rating a particular item. Then, the vector is normalized and the user rates are employed to establish a user-item matrix in which each element of a row vector indicates the interestingness of the given feature for the selected user. Using this matrix, the users are grouped into a number of clusters and their preferred items are identified by calculating the mean value of their rating vectors. The result of the performance evaluation experiments shows that the suggested method provides a remarkable improvement in handling “cold-start” problem, lower time complexity and reasonable accuracy of recommendations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bobadilla J, Ortega F, Hernando A, Bernal J (2012) A collaborative filtering approach to mitigate the new user cold start problem. Knowl Based Syst 26:225–238CrossRef Bobadilla J, Ortega F, Hernando A, Bernal J (2012) A collaborative filtering approach to mitigate the new user cold start problem. Knowl Based Syst 26:225–238CrossRef
go back to reference Cacheda F, Carneiro V, Fernndez D, Formoso V (2011) Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable. High-performance recommender systems. ACM Trans Web 5:2:1–2:33CrossRef Cacheda F, Carneiro V, Fernndez D, Formoso V (2011) Comparison of collaborative filtering algorithms: limitations of current techniques and proposals for scalable. High-performance recommender systems. ACM Trans Web 5:2:1–2:33CrossRef
go back to reference Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Found Trends Hum Comput Interact 4:81–173CrossRef Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Found Trends Hum Comput Interact 4:81–173CrossRef
go back to reference Koren Y, Bell R (2011) Advances in collaborative filtering. Recommender systems handbook. Springer, New York Koren Y, Bell R (2011) Advances in collaborative filtering. Recommender systems handbook. Springer, New York
go back to reference Lika B, Kolomvatsos K, Hadjiefthymiades S (2014) Facing the cold start problem in recommender systems. Expert Syst Appl 41:2065–2073CrossRef Lika B, Kolomvatsos K, Hadjiefthymiades S (2014) Facing the cold start problem in recommender systems. Expert Syst Appl 41:2065–2073CrossRef
go back to reference Manouselis N, Said A, Tikk D, Hermanns J, Kille B, Drachsler H, Jack K (2012) Recommender systems challenge 2012. In: Proceedings of the sixth ACM conference on recommender systems. doi:10.1145/2365952.2366043 Manouselis N, Said A, Tikk D, Hermanns J, Kille B, Drachsler H, Jack K (2012) Recommender systems challenge 2012. In: Proceedings of the sixth ACM conference on recommender systems. doi:10.​1145/​2365952.​2366043
go back to reference Pazzani MJ (1999) A framework for collaborative, content-based and demographic filtering. Artif Intell Rev 13:393–408CrossRef Pazzani MJ (1999) A framework for collaborative, content-based and demographic filtering. Artif Intell Rev 13:393–408CrossRef
go back to reference Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning. doi:10.1007/3-540-44491-2-3 Pelleg D, Moore AW (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning. doi:10.​1007/​3-540-44491-2-3
go back to reference Pennock DM, Horvitz E, Lawrence S, Giles CL (2000) Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach. In: Proceedings of the 16th conference on uncertainty in artificial intelligence 64, p 473480 Pennock DM, Horvitz E, Lawrence S, Giles CL (2000) Collaborative filtering by personality diagnosis: a hybrid memory-and model-based approach. In: Proceedings of the 16th conference on uncertainty in artificial intelligence 64, p 473480
go back to reference Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported cooperative work. doi:10.1145/192844.192905 Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported cooperative work. doi:10.​1145/​192844.​192905
go back to reference Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web. doi:10.1145/371920.372071 Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web. doi:10.​1145/​371920.​372071
go back to reference Shardanand U, Maes P (1995) Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI conference on human factors in computing systems. doi:10.1145/223904.223931 Shardanand U, Maes P (1995) Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI conference on human factors in computing systems. doi:10.​1145/​223904.​223931
go back to reference Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. In: Hong J (ed) Advances in artificial intelligence. Hindawi Publishing Corp, New York, p 4:2 Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. In: Hong J (ed) Advances in artificial intelligence. Hindawi Publishing Corp, New York, p 4:2
go back to reference Vucetic S, Obradovic Z (2000) A regression-based approach for scaling-up personalized recommender systems in e-commerce. In: Proceedings of the ACM WebKDD workshop Vucetic S, Obradovic Z (2000) A regression-based approach for scaling-up personalized recommender systems in e-commerce. In: Proceedings of the ACM WebKDD workshop
go back to reference Wu ML, Chang CH, Liu RZ (2014) Integrating content-based filtering with collaborative filtering using co-clustering with augmented matrices. Expert Syst Appl 41:2754–2761CrossRef Wu ML, Chang CH, Liu RZ (2014) Integrating content-based filtering with collaborative filtering using co-clustering with augmented matrices. Expert Syst Appl 41:2754–2761CrossRef
Metadata
Title
Improving collaborative recommendations using vector quantization and clustering
Authors
Farsad Zamani Boroujeni
Mohammad Behnia
Simindokht Jahangard
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0377-2

Premium Partner