Skip to main content
Top

2024 | OriginalPaper | Chapter

Improving Network Intrusion Detection with Convolutional Neural Networks and Data Balancing Techniques

Authors : Yaqot Mohsin Hazzaa, Shahla U. Umar

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to maintain network security and detect intrusion attacks, Intrusion Detection Systems (IDS) have become an important technology. Due to the growing usage of the internet, intrusion attacks have become more frequent and can lead to the theft, alteration, or deletion of user data. IDS systems provide an active approach to network security by differentiating between normal and intrusion traffic, which needs to be blocked to protect the network. IDS systems have a wide range of applications in academic and business communities. Researchers have employed deep learning methods for network traffic classification, and conventional neural networks are popular due to their accuracy and versatility in handling various types of data. IoT systems, which are made up of connected devices, are also vulnerable to intrusion attacks, emphasizing the importance of IDS systems. To detect intrusion patterns, researchers have used the NSL-KDD dataset and employed a CNN neural network, which is an imbalanced dataset, meaning that the distribution of classes in the dataset is uneven. The proposed approach includes preprocessing techniques using oversampling by SMOT technique to improve the performance of the CNN-based IDS. The CNN network showed an excellent accuracy rate of 99.87%, and the accuracy rate further increased to 90.12% by incorporating the DLNID model to detect intrusion traffic. This demonstrates the potential of IDS systems and deep learning techniques for maintaining network security and protecting against intrusion attacks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alajanbi, M., Mohd Arfian Ismail, R.A.H., Sulaiman, J.: Intrusion detection: a review. Mesopotamian. J. Cybersecur. (2021) Alajanbi, M., Mohd Arfian Ismail, R.A.H., Sulaiman, J.: Intrusion detection: a review. Mesopotamian. J. Cybersecur. (2021)
2.
go back to reference Alzubi, O.A., Alzubi, J.A., Alazab, M., Alrabea, A., Awajan, A., Qiqieh, I.: Optimized machine learning-based intrusion detection system for fog and edge computing environment. Electronics (2022) Alzubi, O.A., Alzubi, J.A., Alazab, M., Alrabea, A., Awajan, A., Qiqieh, I.: Optimized machine learning-based intrusion detection system for fog and edge computing environment. Electronics (2022)
3.
go back to reference Alani, M.M., Damiani, E., Ghosh, U.: DeepIIoT: An Explainable Deep Learning Based Intrusion Detection System for Industrial IOT. In: Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Hong Kong, China, 18–21 July 2022. IEEE, New York, NY, USA (2022) Alani, M.M., Damiani, E., Ghosh, U.: DeepIIoT: An Explainable Deep Learning Based Intrusion Detection System for Industrial IOT. In: Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Hong Kong, China, 18–21 July 2022. IEEE, New York, NY, USA (2022)
4.
go back to reference Ravi, V., Chaganti, R., Alazab, M.: Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system. Comput. Electr. Eng. (2022) Ravi, V., Chaganti, R., Alazab, M.: Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system. Comput. Electr. Eng. (2022)
5.
go back to reference Safara, F., Souri, A., Serrizadeh, M.: Improved intrusion detection method for communication networks using association rule mining and artificial neural networks. IET Commun. (2020) Safara, F., Souri, A., Serrizadeh, M.: Improved intrusion detection method for communication networks using association rule mining and artificial neural networks. IET Commun. (2020)
6.
go back to reference Abdel-Basset, M., Moustafa, N., Hawash, H., Ding, W.: Deep Learning Techniques for IoT Security and Privacy; Springer: New York, NY, USA (2022) Abdel-Basset, M., Moustafa, N., Hawash, H., Ding, W.: Deep Learning Techniques for IoT Security and Privacy; Springer: New York, NY, USA (2022)
7.
go back to reference An, G.H., Cho, T.H.: Improving sinkhole attack detection rate through knowledge-based specification rule for a sinkhole attack intrusion detection technique of IoT. Int. J. Comput. Netw. Appl. (IJCNA) (2022) An, G.H., Cho, T.H.: Improving sinkhole attack detection rate through knowledge-based specification rule for a sinkhole attack intrusion detection technique of IoT. Int. J. Comput. Netw. Appl. (IJCNA) (2022)
8.
go back to reference Cervantes, C., Poplade, D., Nogueira, M., Santos, A.: Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for Internet of Things. In: Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; IEEE, New York, NY, USA (2015) Cervantes, C., Poplade, D., Nogueira, M., Santos, A.: Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for Internet of Things. In: Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; IEEE, New York, NY, USA (2015)
9.
go back to reference Asad, H., Gashi, I.: Dynamical analysis of diversity in rule-based open source network intrusion detection systems. Empir. Softw. Eng. (2022) Asad, H., Gashi, I.: Dynamical analysis of diversity in rule-based open source network intrusion detection systems. Empir. Softw. Eng. (2022)
10.
go back to reference Najam, C.U., Fakhrudeen, A.M.: On the performance of intrusion detection systems for the internet of things: State-of-the-Art in Research. Int. J. Nonlinear Anal. Appl. 14(1), 1413–1436 (2023) Najam, C.U., Fakhrudeen, A.M.: On the performance of intrusion detection systems for the internet of things: State-of-the-Art in Research. Int. J. Nonlinear Anal. Appl. 14(1), 1413–1436 (2023)
11.
go back to reference Shanmugavadivu, R., Dr. Nagarajan, N.: Network intrusion detection system using fuzzy logic. Indian J. Comput. Sci. Eng. (IJCSE) (2011) Shanmugavadivu, R., Dr. Nagarajan, N.: Network intrusion detection system using fuzzy logic. Indian J. Comput. Sci. Eng. (IJCSE) (2011)
12.
go back to reference Almseidin, M., Al-Sawwa, J., Alkasassbeh, M.: Anomaly-based intrusion detection system using fuzzy logic Almseidin, M., Al-Sawwa, J., Alkasassbeh, M.: Anomaly-based intrusion detection system using fuzzy logic
16.
go back to reference Sathish Kumar, P., Raaza, A.: Study and analysis of intrusion detection system using random forest and linear regression. Period. Eng. Nat. Sci. 6(1), 197–200 (2018), ISSN 2303–4521. http://pen.ius.edu.ba Sathish Kumar, P., Raaza, A.: Study and analysis of intrusion detection system using random forest and linear regression. Period. Eng. Nat. Sci. 6(1), 197–200 (2018), ISSN 2303–4521. http://​pen.​ius.​edu.​ba
17.
go back to reference Bharti, K. K., Shukla, Sweta Jain, S.: Intrusion detection using clustering. Int. J. Comput. Commun. Technol. (2010) Bharti, K. K., Shukla, Sweta Jain, S.: Intrusion detection using clustering. Int. J. Comput. Commun. Technol. (2010)
18.
go back to reference Damodaram, A., Bhatra Charyulu, N.Ch.: Algorithm for clustering with intrusion detection using modified and hashed K – means algorithms. Adv. Comput. Sci., Eng. Appl., 737–744 Damodaram, A., Bhatra Charyulu, N.Ch.: Algorithm for clustering with intrusion detection using modified and hashed K – means algorithms. Adv. Comput. Sci., Eng. Appl., 737–744
19.
go back to reference Ms. Phutane, T., Prof. Pathan, A.: Intrusion detection system using decision tree and Apriori algorithm. Int. J. Comput. Eng. & Technol. (IJCET) 6(7), 10–19 (2015), Article ID: IJCET_06_07_002. http://www.iaeme.com/IJCET/ Ms. Phutane, T., Prof. Pathan, A.: Intrusion detection system using decision tree and Apriori algorithm. Int. J. Comput. Eng. & Technol. (IJCET) 6(7), 10–19 (2015), Article ID: IJCET_06_07_002. http://​www.​iaeme.​com/​IJCET/​
20.
go back to reference Pei, J., Upadhyaya Faisal Farooq, S.J., Govindaraju, V.: Data Mining for Intrusion Detection. State University of New York at Buffalo Pei, J., Upadhyaya Faisal Farooq, S.J., Govindaraju, V.: Data Mining for Intrusion Detection. State University of New York at Buffalo
22.
go back to reference Abdallah, E.E., Eleisah, W., Otoom, A.F.: Intrusion detection systems using supervised machine learning techniques: a survey. Procedia Comput. (2022) Abdallah, E.E., Eleisah, W., Otoom, A.F.: Intrusion detection systems using supervised machine learning techniques: a survey. Procedia Comput. (2022)
24.
go back to reference Debar, H.: An introduction to intrusion-detection systems. Télécom SudParis - Institut Mines-Télécom (2009) Debar, H.: An introduction to intrusion-detection systems. Télécom SudParis - Institut Mines-Télécom (2009)
26.
go back to reference Roy, S., Li, J., Choi, B.J., Bai, Y.: A lightweight supervised intrusion detection mechanism for IoT networks. Futur. Gener. Comput. Syst. 127, 276–285 (2022)CrossRef Roy, S., Li, J., Choi, B.J., Bai, Y.: A lightweight supervised intrusion detection mechanism for IoT networks. Futur. Gener. Comput. Syst. 127, 276–285 (2022)CrossRef
27.
go back to reference Hancock, J.T., Khoshgoftaar, T.M.: Survey on categorical data for neural networks. J. Big Data 7(1), 1–41 (2020)CrossRef Hancock, J.T., Khoshgoftaar, T.M.: Survey on categorical data for neural networks. J. Big Data 7(1), 1–41 (2020)CrossRef
28.
go back to reference Syed, N.F., Ge, M., Baig, Z.: Fog-cloud based intrusion detection system using Recurrent Neural Networks and feature selection for IoT networks. Comput. Netw. 225, 109662 (2023)CrossRef Syed, N.F., Ge, M., Baig, Z.: Fog-cloud based intrusion detection system using Recurrent Neural Networks and feature selection for IoT networks. Comput. Netw. 225, 109662 (2023)CrossRef
29.
go back to reference Alferaidi, A., Yadav, K., Alharbi, Y., Razmjooy, N., Viriyasitavat, W., Gulati, K., ... , Dhiman, G.: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles. Math. Probl. Eng. (2022) Alferaidi, A., Yadav, K., Alharbi, Y., Razmjooy, N., Viriyasitavat, W., Gulati, K., ... , Dhiman, G.: Distributed deep CNN-LSTM model for intrusion detection method in IoT-based vehicles. Math. Probl. Eng. (2022)
30.
go back to reference Iqbal, M.O., Obaid, A.J., Agarwal, P., Mufti, T., Hassan, A.R.: Blockchain technology and decentralized applications using blockchain. In: Tuba, M., Akashe, S., Joshi, A. (eds.) ICT Infrastructure and Computing. Lecture Notes in Networks and Systems, vol. 520. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-5331-6_57 Iqbal, M.O., Obaid, A.J., Agarwal, P., Mufti, T., Hassan, A.R.: Blockchain technology and decentralized applications using blockchain. In: Tuba, M., Akashe, S., Joshi, A. (eds.) ICT Infrastructure and Computing. Lecture Notes in Networks and Systems, vol. 520. Springer, Singapore (2023). https://​doi.​org/​10.​1007/​978-981-19-5331-6_​57
Metadata
Title
Improving Network Intrusion Detection with Convolutional Neural Networks and Data Balancing Techniques
Authors
Yaqot Mohsin Hazzaa
Shahla U. Umar
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_53