Skip to main content
Top
Published in:

13-08-2024

Improving the galvanized roll stock production technology by using machine learning methods: a case study of the novolipetsk steel (NLMK) continuous hot-dip galvanizing unit (CHGU-1)

Authors: Yu. S. Toroptseva, A. V. Kuznetsov, A. L. Kotikov

Published in: Metallurgist | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper describes the existing technologies and challenges associated with galvanized metal production at the Novolipetsk Steel (NLMK) plant. Possible ways to improve the process using machine-learning tools are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang Y, Chen C, Wang J (2014) Temperature prediction in hot dip galvanizing using neural network models. J Mater Process Techn 214(10):2071–2079 Wang Y, Chen C, Wang J (2014) Temperature prediction in hot dip galvanizing using neural network models. J Mater Process Techn 214(10):2071–2079
2.
go back to reference Shen Y, Chen L, Yang Y, Li X (2019) A machine learning model for predicting the quality of hot-dip galvanized coating. J Mater Eng Perform: 2184–2191 Shen Y, Chen L, Yang Y, Li X (2019) A machine learning model for predicting the quality of hot-dip galvanized coating. J Mater Eng Perform: 2184–2191
4.
go back to reference Proskurkin YV, Popovich VA, Moroz AT (1988) Galvanization: handbook. Metallurgiya, Moscow Proskurkin YV, Popovich VA, Moroz AT (1988) Galvanization: handbook. Metallurgiya, Moscow
7.
go back to reference Smith J (2022) Digital transformation in steel manufacturing: a case study of tata steel. Intern J Ind Eng: 78–92 Smith J (2022) Digital transformation in steel manufacturing: a case study of tata steel. Intern J Ind Eng: 78–92
8.
go back to reference Muntin AV, Zhikharev PY, Zinyagin AG, Braiko DA (2023) Artificial intelligence and machine learning in metallurgy. Part 1. Methods and algorithms. Metallurg 6:124–130CrossRef Muntin AV, Zhikharev PY, Zinyagin AG, Braiko DA (2023) Artificial intelligence and machine learning in metallurgy. Part 1. Methods and algorithms. Metallurg 6:124–130CrossRef
9.
go back to reference Zhikharev PY, Muntin AV, Braiko DA, Kryuchkova MO (2023) Artificial intelligence and machine learning in metallurgy. Part 2. Application examples. Metallurg 10:99–111 Zhikharev PY, Muntin AV, Braiko DA, Kryuchkova MO (2023) Artificial intelligence and machine learning in metallurgy. Part 2. Application examples. Metallurg 10:99–111
Metadata
Title
Improving the galvanized roll stock production technology by using machine learning methods: a case study of the novolipetsk steel (NLMK) continuous hot-dip galvanizing unit (CHGU-1)
Authors
Yu. S. Toroptseva
A. V. Kuznetsov
A. L. Kotikov
Publication date
13-08-2024
Publisher
Springer US
Published in
Metallurgist / Issue 4/2024
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-024-01761-y

Other articles of this Issue 4/2024

Metallurgist 4/2024 Go to the issue

Premium Partners