Skip to main content
Top

2019 | OriginalPaper | Chapter

Improving the Link Prediction by Exploiting the Collaborative and Context-Aware Social Influence

Authors : Han Gao, Yuxin Zhang, Bohan Li

Published in: Advanced Data Mining and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of link prediction has attracted increasing attention with the booming social networks. Researchers utilized topological features of networks and the attribute features of nodes to predict new links in the future or find the missing links in the current network. Some of the works take topic into consideration, but they don’t think of the social influence that has potential impacts on link prediction. Hence, it leads us to introduce social influence into topics to find contexts. In this paper, we propose a novel model under the collaborative filter framework and improve the link prediction by exploiting context-aware social influence. We also adopt the clustering algorithm with the use of topological features, thus we incorporate the social influence, topic and topological structure to improve the quality of link prediction. We test our method on Digg data set and the results of the experiment demonstrate that our method performs better than the traditional approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, P., Xu, B.W., Wu, Y.R., et al.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015) Wang, P., Xu, B.W., Wu, Y.R., et al.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)
2.
go back to reference Barbieri, N., Bonchi, F., Manco, G.: Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1266–1275. ACM (2014) Barbieri, N., Bonchi, F., Manco, G.: Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1266–1275. ACM (2014)
3.
go back to reference Backstrom, L., Huttenlocher, D., Kleinberg, J., et al.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM (2006) Backstrom, L., Huttenlocher, D., Kleinberg, J., et al.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM (2006)
4.
go back to reference Lin, D.: An information-theoretic definition of similarity. In: Icml, vol. 1998, no. 98, pp. 296–304 (1998) Lin, D.: An information-theoretic definition of similarity. In: Icml, vol. 1998, no. 98, pp. 296–304 (1998)
5.
go back to reference Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)CrossRef Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Phys. Rev. E 73(2), 026120 (2006)CrossRef
6.
go back to reference Tylenda, T., Angelova, R., Bedathur, S.: Towards time-aware link prediction in evolving social networks. In: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, p. 9. ACM (2009) Tylenda, T., Angelova, R., Bedathur, S.: Towards time-aware link prediction in evolving social networks. In: Proceedings of the 3rd Workshop on Social Network Mining and Analysis, p. 9. ACM (2009)
7.
go back to reference Aslan, S., Kaya, M.: Topic recommendation for authors as a link prediction problem. Future Gener. Comput. Syst. 89, 249–264 (2018)CrossRef Aslan, S., Kaya, M.: Topic recommendation for authors as a link prediction problem. Future Gener. Comput. Syst. 89, 249–264 (2018)CrossRef
8.
go back to reference Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 325–334. ACM (2009) Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 325–334. ACM (2009)
9.
go back to reference Yang, Y., Jia, J., Wu, B., et al.: Social role-aware emotion contagion in image social networks. In: Thirtieth AAAI Conference on Artificial Intelligence (2016) Yang, Y., Jia, J., Wu, B., et al.: Social role-aware emotion contagion in image social networks. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)
10.
go back to reference Li, J., Liu, C., Yu, J.X., et al.: Personalized influential topic search via social network summarization. IEEE Trans. Knowl. Data Eng. 28(7), 1820–1834 (2016)CrossRef Li, J., Liu, C., Yu, J.X., et al.: Personalized influential topic search via social network summarization. IEEE Trans. Knowl. Data Eng. 28(7), 1820–1834 (2016)CrossRef
11.
go back to reference Nguyen, J.H., Hu, B., Günnemann, S., et al.: Finding contexts of social influence in online social networks. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 1. ACM (2013) Nguyen, J.H., Hu, B., Günnemann, S., et al.: Finding contexts of social influence in online social networks. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 1. ACM (2013)
12.
go back to reference Sharma, P.K., Rathore, S., Park, J.H.: Multilevel learning based modeling for link prediction and users’ consumption preference in online social networks. Future Gener. Comput. Syst. (2017) Sharma, P.K., Rathore, S., Park, J.H.: Multilevel learning based modeling for link prediction and users’ consumption preference in online social networks. Future Gener. Comput. Syst. (2017)
13.
go back to reference Wang, X., He, D., Chen, D., et al.: Clustering-based collaborative filtering for link prediction. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015) Wang, X., He, D., Chen, D., et al.: Clustering-based collaborative filtering for link prediction. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
14.
go back to reference Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 322–331. IEEE (2007) Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 322–331. IEEE (2007)
15.
go back to reference Pujari, M., Kanawati, R.: Supervised rank aggregation approach for link prediction in complex networks. Proceedings of the 21st International Conference on World Wide Web, pp. 1189–1196. ACM (2012) Pujari, M., Kanawati, R.: Supervised rank aggregation approach for link prediction in complex networks. Proceedings of the 21st International Conference on World Wide Web, pp. 1189–1196. ACM (2012)
16.
go back to reference Ahmed, C., ElKorany, A., Bahgat, R.: A supervised learning approach to link prediction in Twitter. Soc. Netw. Anal. Min. 6(1), 24 (2016)CrossRef Ahmed, C., ElKorany, A., Bahgat, R.: A supervised learning approach to link prediction in Twitter. Soc. Netw. Anal. Min. 6(1), 24 (2016)CrossRef
17.
go back to reference Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008) Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 7–15. ACM (2008)
18.
go back to reference La Fond, T., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of the 19th International Conference on World Wide Web, pp. 601–610. ACM (2010) La Fond, T., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of the 19th International Conference on World Wide Web, pp. 601–610. ACM (2010)
19.
go back to reference Singla, P., Richardson, M.: Yes, there is a correlation:-from social networks to personal behavior on the web. Proceedings of the 17th International Conference on World Wide Web, pp. 655–664. ACM (2008) Singla, P., Richardson, M.: Yes, there is a correlation:-from social networks to personal behavior on the web. Proceedings of the 17th International Conference on World Wide Web, pp. 655–664. ACM (2008)
20.
go back to reference Kempe, D., Kleinberg, J., Tardos,É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003) Kempe, D., Kleinberg, J., Tardos,É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)
21.
go back to reference Tang, J., Sun, J., Wang, C., et al.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816. ACM (2009) Tang, J., Sun, J., Wang, C., et al.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816. ACM (2009)
22.
go back to reference Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010) Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 241–250. ACM (2010)
23.
go back to reference Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM (2010) Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM (2010)
24.
go back to reference Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009)CrossRef Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009)CrossRef
25.
go back to reference Goldberg, D., Nichols, D., Oki, B.M., et al.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)CrossRef Goldberg, D., Nichols, D., Oki, B.M., et al.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)CrossRef
26.
go back to reference Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 2003(1), 76–80 (2003)CrossRef Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 2003(1), 76–80 (2003)CrossRef
27.
go back to reference Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)CrossRef Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 22(1), 89–115 (2004)CrossRef
28.
go back to reference Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using belief nets algorithms. In: 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, vol. 2006, pp. 497–504. IEEE (2006) Su, X., Khoshgoftaar, T.M.: Collaborative filtering for multi-class data using belief nets algorithms. In: 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, vol. 2006, pp. 497–504. IEEE (2006)
29.
go back to reference Su, X., Khoshgoftaar, T.M., Zhu, X., et al.: Imputation-boosted collaborative filtering using machine learning classifiers. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 949–950. ACM (2008) Su, X., Khoshgoftaar, T.M., Zhu, X., et al.: Imputation-boosted collaborative filtering using machine learning classifiers. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 949–950. ACM (2008)
30.
go back to reference Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Aaai/iaai, vol. 23, pp. 187–192 (2002) Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Aaai/iaai, vol. 23, pp. 187–192 (2002)
31.
go back to reference Pavlov, D.Y., Pennock, D.M.: A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In: Advances in Neural Information Processing Systems, pp. 1465–1472 (2003) Pavlov, D.Y., Pennock, D.M.: A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In: Advances in Neural Information Processing Systems, pp. 1465–1472 (2003)
32.
go back to reference Aslan, S., Kaya, M.: Topic recommendation for authors as a link prediction problem. Future Gener. Comput. Syst. 89, 249–264 (2018)CrossRef Aslan, S., Kaya, M.: Topic recommendation for authors as a link prediction problem. Future Gener. Comput. Syst. 89, 249–264 (2018)CrossRef
33.
go back to reference Cha, M., Haddadi, H., Benevenuto, F., et al.: Measuring user influence in Twitter: the million follower fallacy. In: Fourth International AAAI Conference on Weblogs and Social Media (2010) Cha, M., Haddadi, H., Benevenuto, F., et al.: Measuring user influence in Twitter: the million follower fallacy. In: Fourth International AAAI Conference on Weblogs and Social Media (2010)
34.
go back to reference Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRef Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRef
35.
go back to reference Newman, M.E.J.: Clustering preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)CrossRef Newman, M.E.J.: Clustering preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)CrossRef
Metadata
Title
Improving the Link Prediction by Exploiting the Collaborative and Context-Aware Social Influence
Authors
Han Gao
Yuxin Zhang
Bohan Li
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-35231-8_22

Premium Partner