Skip to main content
Top
Published in: Wireless Personal Communications 2/2020

12-05-2020

Improving the Performance of HALE UAV Communication Link Through MIMO Cooperative Relay Strategy

Authors: Mohammadreza Tarihi, Mohammad Mahdinejad Noori, Mohammadhossein Madani

Published in: Wireless Personal Communications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-altitude long endurance unmanned aerial vehicles (HALE UAVs) are military and strategic UAVs that fly above the ground in the stratosphere. The ability of stealth technology and long flight time, has led to use of these UAVs for various military missions such as interception and spying, control guidance, remote sensing, navigation, surveillance and others. In this paper, improving the performance of HALE UAVs communication through multiple input multiple output (MIMO) cooperative relay with amplitude-and-forward strategy is investigated. In clear sky (without rain), two-hop system with line of sight (LoS) channels from source to relay and relay to destination is considered. In LoS-MIMO channels, due to correlation between the sub-channels, neither high-rank MIMO channel nor maximum capacity are achieved. However, based on antennas optimum placement that provide orthogonally between the received signals, maximum capacity will be obtained. The proposed scheme in this paper dramatically increases capacity relative to LoS-SISO channel and dual-hop MIMO Rayleigh up to 6 b/s/Hz and 2 b/s/Hz respectively. Also, simulation results verify exactness analytical expressions. However, rain as one of the most important ambient conditions causes the signal to be scattered in different directions. Therefore, LoS channel is changed to fading (Rayleigh) channel by increasing rainfall. In this case, telecommunication range is proposed as a meaningful metric, and outage probability (Poutage) based on telecommunication range for N-hop channel is extracted. In rainy conditions, simulation results show, the telecommunication range dramatically increases by increasing the number of relay UAVs for specified outage probability so that in the long-range, the outage probability decreases up to 50% with the increasing number of relays.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Baek, H., & Lim, J. (2018). Design of future UAV-relay tactical data link for reliable UAV control and situational awareness. IEEE Communications Magazine,56(10), 144–150.CrossRef Baek, H., & Lim, J. (2018). Design of future UAV-relay tactical data link for reliable UAV control and situational awareness. IEEE Communications Magazine,56(10), 144–150.CrossRef
2.
go back to reference Han, S., Baek, J., & Han, Y. (2018). Deployment of multi-layer UAV relay system. In IEEE wireless communications and networking conference (WCNC), (pp. 15–18). Han, S., Baek, J., & Han, Y. (2018). Deployment of multi-layer UAV relay system. In IEEE wireless communications and networking conference (WCNC), (pp. 15–18).
3.
go back to reference Ebrahimi D., Sharafeddine S., Ho, P.-H., & Assi, C. (2018). UAV-Aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 6(2), 1893–1905.CrossRef Ebrahimi D., Sharafeddine S., Ho, P.-H., & Assi, C. (2018). UAV-Aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 6(2), 1893–1905.CrossRef
4.
go back to reference Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine,54(5), 36–42.CrossRef Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine,54(5), 36–42.CrossRef
5.
go back to reference Grace, D., & Mohorčič, M. (2011). Broadband communications via high altitude platforms. New York: Wiley. Grace, D., & Mohorčič, M. (2011). Broadband communications via high altitude platforms. New York: Wiley.
6.
go back to reference Aragón-Zavala, A., Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2008). High-altitude platforms for wireless communications. New York: Wiley.CrossRef Aragón-Zavala, A., Cuevas-Ruíz, J. L., & Delgado-Penín, J. A. (2008). High-altitude platforms for wireless communications. New York: Wiley.CrossRef
7.
go back to reference Valavanis, K. P., & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. New York: Springer.CrossRef Valavanis, K. P., & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. New York: Springer.CrossRef
8.
go back to reference Widiawan, A. K., & Tafazolli, R. (2007). High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications. Wireless Personal Communications,42(3), 387–404.CrossRef Widiawan, A. K., & Tafazolli, R. (2007). High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications. Wireless Personal Communications,42(3), 387–404.CrossRef
9.
go back to reference Jin, S., McKay, M. R., Zhong, C. Wong, K.-K. (2010). Ergodic capacity analysis of amplify-and-forward MIMO dual-hop systems. IEEE Transactions on Information Theory, 56(5), 2204–2224.MathSciNetCrossRef Jin, S., McKay, M. R., Zhong, C. Wong, K.-K. (2010). Ergodic capacity analysis of amplify-and-forward MIMO dual-hop systems. IEEE Transactions on Information Theory, 56(5), 2204–2224.MathSciNetCrossRef
10.
go back to reference Dziri, A., Ammar, A. B., & Terre, M. (2017), Performance analysis of MIMO cooperative relays for wireless sensor networks. In 13th International Wireless Communications and Mobile Computing Conference (IWCMC). Dziri, A., Ammar, A. B., & Terre, M. (2017), Performance analysis of MIMO cooperative relays for wireless sensor networks. In 13th International Wireless Communications and Mobile Computing Conference (IWCMC).
11.
go back to reference Darsena, D., Gelli, G., & Verde, F. (2019). Design and performance analysis of multiple-relay cooperative MIMO networks. Journal of Communications and Networks,21(1), 25–32.CrossRef Darsena, D., Gelli, G., & Verde, F. (2019). Design and performance analysis of multiple-relay cooperative MIMO networks. Journal of Communications and Networks,21(1), 25–32.CrossRef
12.
go back to reference He, Q., Wang, Z., Jianbin, H., & Blum, R. S. (2019). Performance gains from cooperative MIMO Radar and MIMO communication systems. IEEE Signal Processing Letters,26(1), 194–198.CrossRef He, Q., Wang, Z., Jianbin, H., & Blum, R. S. (2019). Performance gains from cooperative MIMO Radar and MIMO communication systems. IEEE Signal Processing Letters,26(1), 194–198.CrossRef
13.
go back to reference Waluyo, C. B., & Astuti, Y. (2017). Performance analysis for MIMO LTE on the high altitude platform station. In 4th international conference on electrical engineering, computer science and informatics (EECSI) (pp. 198–204). Waluyo, C. B., & Astuti, Y. (2017). Performance analysis for MIMO LTE on the high altitude platform station. In 4th international conference on electrical engineering, computer science and informatics (EECSI) (pp. 198–204).
14.
go back to reference Hanna, A., Yan, H., & Cabric, D. (2019). Distributed UAV placement optimization for cooperative line-of-sight MIMO communications. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Hanna, A., Yan, H., & Cabric, D. (2019). Distributed UAV placement optimization for cooperative line-of-sight MIMO communications. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
15.
go back to reference Michailidis, E. T., Efthymoglou, G., & Kanatas, A. G. (2008) Spatially correlated 3-D HAP-MIMO fading channels, international workshop on aerial & space platforms: Research, applications, vision. In conjunction with IEEE Globecom, New Orleans, LA.. Michailidis, E. T., Efthymoglou, G., & Kanatas, A. G. (2008) Spatially correlated 3-D HAP-MIMO fading channels, international workshop on aerial & space platforms: Research, applications, vision. In conjunction with IEEE Globecom, New Orleans, LA..
18.
go back to reference Wagner, J., Rankov, B., & Wittneben, A. (2007). On the asymptotic capacity of the Rayleigh fading amplify-and-forward MIMO relay channel. In Proceedings of IEEE International Symposium on Information Theory (ISIT) (pp. 2711–2715). Wagner, J., Rankov, B., & Wittneben, A. (2007). On the asymptotic capacity of the Rayleigh fading amplify-and-forward MIMO relay channel. In Proceedings of IEEE International Symposium on Information Theory (ISIT) (pp. 2711–2715).
19.
go back to reference Bohagen, F., Orten, P., & Oien, G. E. (2005). Construction and capacity analysis of high-rank line-of-sight MIMO channels. In Proceedings of the IEEE Wireless communications networking conference (pp. 432–437). Bohagen, F., Orten, P., & Oien, G. E. (2005). Construction and capacity analysis of high-rank line-of-sight MIMO channels. In Proceedings of the IEEE Wireless communications networking conference (pp. 432–437).
20.
go back to reference Fukuda, H., Nishimura, T., Ogawa, Y., & Ohgane, T. (2015). Performance evaluation of full-dimension MIMO in indoor line-of-sight environments. In IEEE wireless communications and networking conference (WCNC). Fukuda, H., Nishimura, T., Ogawa, Y., & Ohgane, T. (2015). Performance evaluation of full-dimension MIMO in indoor line-of-sight environments. In IEEE wireless communications and networking conference (WCNC).
21.
go back to reference Cottatellucci, L., & Debbah, M. (2004). On the capacity of MIMO rice channels. In Proceedings of the 42nd Allerton conference. Cottatellucci, L., & Debbah, M. (2004). On the capacity of MIMO rice channels. In Proceedings of the 42nd Allerton conference.
22.
go back to reference Michailidis, E. T., & Kanatas, A. G. (2009). Capacity optimized line-of-sight HAP-MIMO channels for fixed wireless access. In IWSSC 2009. Michailidis, E. T., & Kanatas, A. G. (2009). Capacity optimized line-of-sight HAP-MIMO channels for fixed wireless access. In IWSSC 2009.
23.
go back to reference Sarris, I., & Nix, A. R. (2007). Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component. IEEE Transactions on Vehicular Technology, 56(4), 2194–2202.CrossRef Sarris, I., & Nix, A. R. (2007). Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component. IEEE Transactions on Vehicular Technology, 56(4), 2194–2202.CrossRef
24.
go back to reference Chen, X., Hu, X., Zhu, Q., Zhong, W., & Chen, B. (2018). Channel modeling and performance analysis for UAV relay systems. IEEE China Communication,15(12), 89–97. Chen, X., Hu, X., Zhu, Q., Zhong, W., & Chen, B. (2018). Channel modeling and performance analysis for UAV relay systems. IEEE China Communication,15(12), 89–97.
25.
go back to reference Urosevic, U., Veljovic, Z., &-Djurisic, M. P. (2017). Improving cellular coverage through UAVs. In 20th international symposium on wireless personal multimedia communications (WPMC). Urosevic, U., Veljovic, Z., &-Djurisic, M. P. (2017). Improving cellular coverage through UAVs. In 20th international symposium on wireless personal multimedia communications (WPMC).
26.
go back to reference Ou, Y. J., Zhuang, Y., Xue, Y., et al. (2013). UAV relay transmission scheme and its performance analysis over asymmetric fading channel. Acta Aeronanutica et Astronautica Sinica,34(1), 130–140. (in Chinese). Ou, Y. J., Zhuang, Y., Xue, Y., et al. (2013). UAV relay transmission scheme and its performance analysis over asymmetric fading channel. Acta Aeronanutica et Astronautica Sinica,34(1), 130–140. (in Chinese).
27.
go back to reference Shuaike, H., Yanwen, L., Hao, L., Quiming, Z., Shengkui, Z., Weizhen, C., et al. (2014). An analysis of the UAV relay coverage in mobile ad-hoc network. Applied Mechanics and Materials,577, 879–883.CrossRef Shuaike, H., Yanwen, L., Hao, L., Quiming, Z., Shengkui, Z., Weizhen, C., et al. (2014). An analysis of the UAV relay coverage in mobile ad-hoc network. Applied Mechanics and Materials,577, 879–883.CrossRef
28.
go back to reference Bashir, E.-J., & Steele, R. (2001). Cellular communications using aerial platforms. IEEE Transactions on Vehicular Technology, 50(3), 686–700.CrossRef Bashir, E.-J., & Steele, R. (2001). Cellular communications using aerial platforms. IEEE Transactions on Vehicular Technology, 50(3), 686–700.CrossRef
29.
go back to reference International Telecommunication Union (ITU) (2003) Characteristics of precipitation for propagation modeling, ITU-R P.837-4, Geneva, Switzerland. International Telecommunication Union (ITU) (2003) Characteristics of precipitation for propagation modeling, ITU-R P.837-4, Geneva, Switzerland.
30.
go back to reference International Telecommunication Union (ITU) (1997). Specific attenuation model for rain for use in prediction., ITU‐R P.838‐1, Geneva, Switzerland. International Telecommunication Union (ITU) (1997). Specific attenuation model for rain for use in prediction., ITU‐R P.838‐1, Geneva, Switzerland.
31.
go back to reference Salo, J., El-Sallabi, H. M., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation,54(2), 639–643.MathSciNetCrossRef Salo, J., El-Sallabi, H. M., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation,54(2), 639–643.MathSciNetCrossRef
33.
go back to reference Erceg, V., Fortune, S. F., Ling, J., Rustako, A. J., Jr., & Valenzuela, R. A. (1997). Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications,15(4), 677–684.CrossRef Erceg, V., Fortune, S. F., Ling, J., Rustako, A. J., Jr., & Valenzuela, R. A. (1997). Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments. IEEE Journal on Selected Areas in Communications,15(4), 677–684.CrossRef
34.
go back to reference Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin: Springer.CrossRef Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin: Springer.CrossRef
Metadata
Title
Improving the Performance of HALE UAV Communication Link Through MIMO Cooperative Relay Strategy
Authors
Mohammadreza Tarihi
Mohammad Mahdinejad Noori
Mohammadhossein Madani
Publication date
12-05-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07267-5

Other articles of this Issue 2/2020

Wireless Personal Communications 2/2020 Go to the issue