Skip to main content
Top
Published in:

26-05-2024

Improving the Reliability of Compound Channel Discharge Prediction Using Machine Learning Techniques and Resampling Methods

Authors: Seyed Morteza Seyedian, Ozgur Kisi, Abbas Parsaie, Mojtaba Kashani

Published in: Water Resources Management | Issue 12/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compound channels play an important role in hydraulic and hydrological engineering. Many rivers and streams have naturally compound channels, which are important for both flood control and river ecosystems. When predicting discharge, interval predictions are usually more realistic and reliable than traditional point predictions made using ML models. In this study, the authors used three well-known machine learning techniques (Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Artificial Neural Networks (ANN)) to predict compound channel discharge. To accurately assess uncertainty, two resampling techniques were employed: Bootstrap (B) and Jackknife after Bootstrap (JB). The proposed approach reflects the impacts of statistical uncertainties using prediction confidence intervals and the reliability of point prediction. The JB resampling technique has proven to offer superior accuracy in terms of point prediction and prediction intervals when compared to Bootstrap. Bootstrapping did not yield superior outcomes compared with the standalone ML models. The JB-ANN and JB-ANFIS models outperformed the JB-SVM and Bootstrap ML models in the testing phase, as shown by various statistical measures. This study suggests that the JB-ANN approach is a reliable and robust tool for accurately predicting compound discharges. The findings reveal that when the models have low accuracy in point prediction, the level of uncertainty in predicting the interval also increases. The innovation of this research is enhancing the examination of uncertainties in compound channel discharge by incorporating two resampling techniques to analyze three different ML models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akan AO (2011) Open channel hydraulics/AA Osman. Elsevier Akan AO (2011) Open channel hydraulics/AA Osman. Elsevier
go back to reference Efron B (1979) The 1977 RIETZ lecture. Ann Stat 7(1):1–26 Efron B (1979) The 1977 RIETZ lecture. Ann Stat 7(1):1–26
go back to reference Knight DW, Demetriou JD, Hamed ME (1984) Stage Discharge Relationships for Compound Channels. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 445–459 Knight DW, Demetriou JD, Hamed ME (1984) Stage Discharge Relationships for Compound Channels. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 445–459
go back to reference Quenouille MH (1956) Notes on bias in estimation. Biometrika 43(3/4):353–360CrossRef Quenouille MH (1956) Notes on bias in estimation. Biometrika 43(3/4):353–360CrossRef
go back to reference Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer, New YorkCrossRef Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer, New YorkCrossRef
go back to reference Västilä K, Väisänen S, Koskiaho J, Lehtoranta V, Karttunen K, Kuussaari M, Järvelä J, Koikkalainen K (2021) Agricultural Water Management Using Two-Stage Channels: Performance and Policy Recommendations Based on Northern European Experiences. Sustainability 13(16):9349. https://doi.org/10.3390/su13169349CrossRef Västilä K, Väisänen S, Koskiaho J, Lehtoranta V, Karttunen K, Kuussaari M, Järvelä J, Koikkalainen K (2021) Agricultural Water Management Using Two-Stage Channels: Performance and Policy Recommendations Based on Northern European Experiences. Sustainability 13(16):9349. https://​doi.​org/​10.​3390/​su13169349CrossRef
Metadata
Title
Improving the Reliability of Compound Channel Discharge Prediction Using Machine Learning Techniques and Resampling Methods
Authors
Seyed Morteza Seyedian
Ozgur Kisi
Abbas Parsaie
Mojtaba Kashani
Publication date
26-05-2024
Publisher
Springer Netherlands
Published in
Water Resources Management / Issue 12/2024
Print ISSN: 0920-4741
Electronic ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-024-03883-z