Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 4/2021

01-02-2021 | Original Research Article

Improving Thermal Effects and Reduction of Self-heating Phenomenon in AlGaN/GaN/Si Based HEMT

Authors: Mojtaba Hosseinzadeh Sani, Saeed Khosroabadi

Published in: Journal of Electronic Materials | Issue 4/2021

Login to get access
share
SHARE

Abstract

In this paper, we reduce the self-heating effects of high-electron-mobility transistors (HEMT) by using changes in material and structure. In the first step, the 6H-SiC layer is used both as a substrate layer and as a passive layer. The thermal conductivity of SiC materials is very high, which reduces the heat under the gate. In the second step, the barrier layer is used by a combination of AlGaN and InGaN as a heterojunction. InGaN material is used at the point where the hot spot occurs. These changes in the barrier layer cause the heat to be uniformly distributed under the gate, so that the combination and recombination of electrons and holes in the hot spot are reduced. In the next step, the heat generated in the structure is directed to outside of the structure by a metal plate or field plate. In this paper, the selected structure for reference is fabricated in recent years. Different layers of materials have been grown on the Si substrate layer (AlGaN/GaN/Si). After the changes, the output current increased by 25%, and overall the heat generated in the structure decreased by 40%. The proposed structure is suitable for high-power and high-frequency circuits.
Literature
1.
go back to reference A. Ray, S. Bordoloi, B. Sarkar, P. Agarwal, G. Trivedi, J. Electron. Mater., 2020, 49(3), p 2018–2031. CrossRef A. Ray, S. Bordoloi, B. Sarkar, P. Agarwal, G. Trivedi, J. Electron. Mater., 2020, 49(3), p 2018–2031. CrossRef
2.
go back to reference J. Wu, J. Min, W. Lu, and P.K.L. Yu, J. Electron. Mater., 2015, 44(5), p 1275–1280. CrossRef J. Wu, J. Min, W. Lu, and P.K.L. Yu, J. Electron. Mater., 2015, 44(5), p 1275–1280. CrossRef
3.
go back to reference P. Mukhopadhyay, A. Bag, U. Gomes, U. Banerjee, S. Ghosh, S. Kabi, E.Y.I. Chang, A. Dabiran, P. Chow, and D. Biswas, J. Electron. Mater., 2014, 43(4), p 1263–1270. CrossRef P. Mukhopadhyay, A. Bag, U. Gomes, U. Banerjee, S. Ghosh, S. Kabi, E.Y.I. Chang, A. Dabiran, P. Chow, and D. Biswas, J. Electron. Mater., 2014, 43(4), p 1263–1270. CrossRef
4.
go back to reference M.A. Alim, M.M. Ali, A.A. Rezazadeh, and C. Gaquiere, Microelectron. Eng., 2019, 209, p 53–59. CrossRef M.A. Alim, M.M. Ali, A.A. Rezazadeh, and C. Gaquiere, Microelectron. Eng., 2019, 209, p 53–59. CrossRef
5.
go back to reference M.A. Alim, M.M. Ali, A.A. Rezazadeh, and C. Gaquiere, Microelectron. Eng., 2020, 219, p 11114. CrossRef M.A. Alim, M.M. Ali, A.A. Rezazadeh, and C. Gaquiere, Microelectron. Eng., 2020, 219, p 11114. CrossRef
6.
go back to reference H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, and C. De Santi, J. Phys. D Appl. Phys., 2018, 51(16), p 163001. CrossRef H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, and C. De Santi, J. Phys. D Appl. Phys., 2018, 51(16), p 163001. CrossRef
7.
go back to reference L.-C. Chang, Y.-A. Chen, and C.-H. Kuo, IEEE Trans. Electron Devices, 2014, 61(7), p 2443–2447. CrossRef L.-C. Chang, Y.-A. Chen, and C.-H. Kuo, IEEE Trans. Electron Devices, 2014, 61(7), p 2443–2447. CrossRef
8.
go back to reference F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, 1997, 56(16), p R10024. CrossRef F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B, 1997, 56(16), p R10024. CrossRef
9.
go back to reference F.S. Choi, J.T. Griffiths, C. Ren, K.B. Lee, Z.H. Zaidi, P.A. Houston, I. Guiney, C.J. Humphreys, R.A. Oliver, and D.J. Wallis, J. Appl. Phys., 2018, 124(5), p 055702. CrossRef F.S. Choi, J.T. Griffiths, C. Ren, K.B. Lee, Z.H. Zaidi, P.A. Houston, I. Guiney, C.J. Humphreys, R.A. Oliver, and D.J. Wallis, J. Appl. Phys., 2018, 124(5), p 055702. CrossRef
10.
go back to reference E. Dogmus, M. Zegaoui, and F. Medjdoub, Appl. Phys. Express, 2018, 11(3), p 034102. CrossRef E. Dogmus, M. Zegaoui, and F. Medjdoub, Appl. Phys. Express, 2018, 11(3), p 034102. CrossRef
11.
go back to reference M. Kuzuhara, J.T. Asubar, and H. Tokuda Jpn. J. Appl. Phys., 2016, 55(7), p 070101. CrossRef M. Kuzuhara, J.T. Asubar, and H. Tokuda Jpn. J. Appl. Phys., 2016, 55(7), p 070101. CrossRef
12.
go back to reference R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble IEEE Trans. Microw. Theory Tech., 2012, 60(6), p 1764–1783. CrossRef R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, and W.L. Pribble IEEE Trans. Microw. Theory Tech., 2012, 60(6), p 1764–1783. CrossRef
13.
go back to reference F. Jabli, M.A. Zaidi, M. Gassoumi, H. Mosbahi, M. Charfeddine, T. Alharbi, and H. Maaref, J. Alloys Compd., 2015, 650, p 533–536. CrossRef F. Jabli, M.A. Zaidi, M. Gassoumi, H. Mosbahi, M. Charfeddine, T. Alharbi, and H. Maaref, J. Alloys Compd., 2015, 650, p 533–536. CrossRef
14.
go back to reference Y. Turkulets, and S. Ilan. arXiv preprint arXiv.1904.08683 (2019) Y. Turkulets, and S. Ilan. arXiv preprint arXiv.1904.08683 (2019)
15.
go back to reference H.W. Hou, Z. Liu, J.H. Teng, T. Palacios, and S.J. Chua, Sci. Rep., 2017, 7, p 46664. CrossRef H.W. Hou, Z. Liu, J.H. Teng, T. Palacios, and S.J. Chua, Sci. Rep., 2017, 7, p 46664. CrossRef
16.
go back to reference R. Guggenheim, and R. Lior, IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE (2017). R. Guggenheim, and R. Lior, IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE (2017).
17.
go back to reference I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, J. Appl. Phys., 2001, 90(10), p 5196–5201. CrossRef I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, J. Appl. Phys., 2001, 90(10), p 5196–5201. CrossRef
18.
go back to reference K. Belkacemi, and R. Hocine, J. Low Power Electron. Appl., 2018, 8(3), p 23. CrossRef K. Belkacemi, and R. Hocine, J. Low Power Electron. Appl., 2018, 8(3), p 23. CrossRef
19.
go back to reference X.D. Wang, W.D. Hu, X.S. Chen, and W. Lu, IEEE Trans. Electron Devices, 2012, 59(5), p 1393–1401. CrossRef X.D. Wang, W.D. Hu, X.S. Chen, and W. Lu, IEEE Trans. Electron Devices, 2012, 59(5), p 1393–1401. CrossRef
20.
go back to reference S. Hou, P.E. Hellström, C.M. Zetterling, and M. Östling, IEEE Electron Device Lett., 2018, 40(1), p 51–54. CrossRef S. Hou, P.E. Hellström, C.M. Zetterling, and M. Östling, IEEE Electron Device Lett., 2018, 40(1), p 51–54. CrossRef
Metadata
Title
Improving Thermal Effects and Reduction of Self-heating Phenomenon in AlGaN/GaN/Si Based HEMT
Authors
Mojtaba Hosseinzadeh Sani
Saeed Khosroabadi
Publication date
01-02-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08747-5

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue