Skip to main content
Top

2024 | OriginalPaper | Chapter

Impulses in Generalized Proportional Caputo Fractional Differential Equations and Equivalent Integral Presentation

Authors : Snezhana Hristova, Radoslava Terzieva

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we present both main approaches in the interpretation of the impulses in generalized proportional Caputo fractional differential equations. We started with both equivalent interpretations in differential equations with integer order derivatives and based on them we presented both main cases: with fixed lower limit of the fractional derivative at the initial time and with a changeable lower limit at any impulsive time. In both cases we give an integral presentation of teh solution. Several examples illustrate the concepts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Almeida R., Agarwal R. P., Hristova S., O’Regan D.: Quadratic Lyapunov functions for stability of generalized proportional fractional differential equations with applications to neural networks. Axioms, 10 (4), (2021) 322. https://doi.org/10.3390/axioms10040322. Almeida R., Agarwal R. P., Hristova S., O’Regan D.: Quadratic Lyapunov functions for stability of generalized proportional fractional differential equations with applications to neural networks. Axioms, 10 (4), (2021) 322. https://​doi.​org/​10.​3390/​axioms10040322.
2.
go back to reference Agarwal R.P., Hristova S., O’Regan D.: Non-instantaneous impulses in differential equations, New York: Springer; 2017. Agarwal R.P., Hristova S., O’Regan D.: Non-instantaneous impulses in differential equations, New York: Springer; 2017.
3.
go back to reference Bainov D. D., Simeonov P. S.: Systems with Impulsive Effect: Stability, Theory and Applications, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood, Chichester, 1989. Bainov D. D., Simeonov P. S.: Systems with Impulsive Effect: Stability, Theory and Applications, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood, Chichester, 1989.
4.
go back to reference Das, Sh.: Functional Fractional Calculus, Springer-Verlag Berlin Heidelberg, 2011. Das, Sh.: Functional Fractional Calculus, Springer-Verlag Berlin Heidelberg, 2011.
5.
go back to reference Diethelm, K.: The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg, 2010. Diethelm, K.: The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg, 2010.
7.
go back to reference Hristova, S., Abbas, M.I.: Explicit solutions of initial value problems for fractional generalized proportional differential equations with and without impulses. Symmetry 13, (2021), 996. Hristova, S., Abbas, M.I.: Explicit solutions of initial value problems for fractional generalized proportional differential equations with and without impulses. Symmetry 13, (2021), 996.
8.
go back to reference Jarad, F.; Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S. 2020, 13, 709–722. Jarad, F.; Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S. 2020, 13, 709–722.
10.
go back to reference Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
11.
go back to reference Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, 1999. Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, 1999.
12.
go back to reference Samko, G., Kilbas, A.A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993. Samko, G., Kilbas, A.A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
Metadata
Title
Impulses in Generalized Proportional Caputo Fractional Differential Equations and Equivalent Integral Presentation
Authors
Snezhana Hristova
Radoslava Terzieva
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_22

Premium Partner