Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

In-Network Machine Learning Predictive Analytics: A Swarm Intelligence Approach

Authors : Hristo Ivanov, Christos Anagnostopoulos, Kostas Kolomvatsos

Published in: Convergence of Artificial Intelligence and the Internet of Things

Publisher: Springer International Publishing

Abstract

This chapter addresses the problem of collaborative Predictive Modelling via in-network processing of contextual information captured in Internet of Things (IoT) environments. In-network predictive modelling allows the computing and sensing devices to disseminate only their local predictive Machine Learning (ML) models instead of their local contextual data. The data center, which can be an Edge Gate- way or the Cloud, aggregates these local ML predictive models to predict future outcomes. Given that communication between devices in IoT environments and a centralised data center is energy consuming and communication bandwidth demanding, the local ML predictive models in our proposed in-network processing are trained using Swarm Intelligence for disseminating only their parameters within the network. We further investigate whether dissemination overhead of local ML predictive models can be reduced by sending only relevant ML models to the data center. This is achieved since each IoT node adopts the Particle Swarm Optimisation algorithm to locally train ML models and then collaboratively with their network neighbours one representative IoT node fuses the local ML models. We provide comprehensive experiments over Random and Small World network models using linear and non-linear regression ML models to demonstrate the impact on the predictive accuracy and the benefit of communication-aware in-network predictive modelling in IoT environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Cyclic Redundancy Check.
 
2
Wireless Sensor Network.
 
Literature
1.
go back to reference Anagnostopoulos, C., Hadjiefthymiades, S.: Advanced principal component-based compression schemes for wireless sensor networks. ACM Trans. Sen. Netw. 11(1), 7:1–7:34 (2014). ISSN 1550-4859 Anagnostopoulos, C., Hadjiefthymiades, S.: Advanced principal component-based compression schemes for wireless sensor networks. ACM Trans. Sen. Netw. 11(1), 7:1–7:34 (2014). ISSN 1550-4859
2.
go back to reference Candanedo, L.M., Feldheim, V., Deramaix, D.: Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 140, 81–97 (2017) Candanedo, L.M., Feldheim, V., Deramaix, D.: Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 140, 81–97 (2017)
4.
go back to reference Barabási, A.-L.: Network science acknowledgements random networks. Creative Commons (2014) Barabási, A.-L.: Network science acknowledgements random networks. Creative Commons (2014)
5.
go back to reference Beers, B.: What regression measures. Investopedia (2019). Cited 2 Feb 2019 Beers, B.: What regression measures. Investopedia (2019). Cited 2 Feb 2019
6.
go back to reference Bhatia, R.: Why do data scientists prefer python over java? Analytics India Magazine (2018). Cited 27 Feb 2019 Bhatia, R.: Why do data scientists prefer python over java? Analytics India Magazine (2018). Cited 27 Feb 2019
9.
go back to reference Engelbrecht, A.P.: Particle Swarm Optimization. Wiley (2007) Engelbrecht, A.P.: Particle Swarm Optimization. Wiley (2007)
10.
go back to reference Harth, N., Anagnostopoulos, C.: Edge-centric efficient regression analytics. http://​eprints.​gla.​ac.​uk/​160937/​.​ April 2018 Harth, N., Anagnostopoulos, C.: Edge-centric efficient regression analytics. http://​eprints.​gla.​ac.​uk/​160937/​.​ April 2018
12.
go back to reference Indu, S.D.: Wireless sensor networks: Issues and challenges. Int. J. Comput. Sci. Mob. Comput., 681–685 (20140 Indu, S.D.: Wireless sensor networks: Issues and challenges. Int. J. Comput. Sci. Mob. Comput., 681–685 (20140
15.
go back to reference A. Kaveh. Particle Swarm Optimisation, chapter 2. Springer International Publishing, 2014 A. Kaveh. Particle Swarm Optimisation, chapter 2. Springer International Publishing, 2014
16.
go back to reference Keith: The history of social media: Social networking evolution! https://​historycooperati​ve.​org/​the-history-of-social-media/​journal=​HistoryCooperati​ve (2019). Cited 21 March 2019 Keith: The history of social media: Social networking evolution! https://​historycooperati​ve.​org/​the-history-of-social-media/​journal=​HistoryCooperati​ve (2019). Cited 21 March 2019
18.
go back to reference Lueth, K.L.: State of the IOT 2018: Number of IOT devices now at 7b—market accelerating. IoT Analytics (2018). Cited 28 Feb 2019 Lueth, K.L.: State of the IOT 2018: Number of IOT devices now at 7b—market accelerating. IoT Analytics (2018). Cited 28 Feb 2019
19.
go back to reference Lv, Y., Tian, Y.: Design and application of sink node for wireless sensor network. In: 2010 2nd International Conference on Industrial and Information Systems, vol. 1, pp. 487–490 (2010) Lv, Y., Tian, Y.: Design and application of sink node for wireless sensor network. In: 2010 2nd International Conference on Industrial and Information Systems, vol. 1, pp. 487–490 (2010)
22.
go back to reference Oliphant, T.: Numpy: A guide to numpy. USA: Trelgol Publishing (2006). Cited 24 March 2019 Oliphant, T.: Numpy: A guide to numpy. USA: Trelgol Publishing (2006). Cited 24 March 2019
23.
go back to reference Özsoy, V.S., Örkcü, H.: Estimating the parameters of nonlinear regression models through particle swarm optimization. Gazi Univ. J. Sci. 29, 187–199 (2016) Özsoy, V.S., Örkcü, H.: Estimating the parameters of nonlinear regression models through particle swarm optimization. Gazi Univ. J. Sci. 29, 187–199 (2016)
26.
go back to reference Riordan, O., Wormald, N.: The diameter of sparse random graphs. Combinat. Prob. Comput. 19(5–6), 835–926 (2010) MathSciNetCrossRef Riordan, O., Wormald, N.: The diameter of sparse random graphs. Combinat. Prob. Comput. 19(5–6), 835–926 (2010) MathSciNetCrossRef
Metadata
Title
In-Network Machine Learning Predictive Analytics: A Swarm Intelligence Approach
Authors
Hristo Ivanov
Christos Anagnostopoulos
Kostas Kolomvatsos
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_7

Premium Partner