Skip to main content
Top

2019 | OriginalPaper | Chapter

66. In-Situ Nanomechanical Testing in Electron Microscopes

Author : Shou-Yi Chang

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding the mechanical behavior of nanostructured and nanosized materials at the nanoscale is very important in improving their structural stability and operational reliability. This chapter introduces unique in-situ nanomechanical testing techniques in electron microscopes that assist in the precise positioning and direct characterization of nanoscale samples, while avoiding their aging or contamination by the environment. The first two short sections address the importance of mechanical behavior at the nanoscale and present some examples of conventional nanomechanical testing and ex-situ deformation observations. The third section introduces the instrument for in-situ nanomechanical testing in electron microscopes, the preparation of samples for testing, and some complimentary components of the tools. The final section presents some applications of the powerful techniques to achieve precise mechanical measurements and direct deformation/failure observations at the nanoscale of various materials of various dimensions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Freund LB, Suresh S. Thin film materials – stress, defect formation and surface evaluation. New York: Cambridge University Press; 2003.MATH Freund LB, Suresh S. Thin film materials – stress, defect formation and surface evaluation. New York: Cambridge University Press; 2003.MATH
2.
go back to reference Chang SY, Chang HL, Lu YC, Jang SM, Lin SJ, Liang MS. Mechanical property analyses of porous low-dielectric-constant films for stability evaluation of multilevel-interconnect structures. Thin Solid Films. 2004;460(1–2):167–74.CrossRef Chang SY, Chang HL, Lu YC, Jang SM, Lin SJ, Liang MS. Mechanical property analyses of porous low-dielectric-constant films for stability evaluation of multilevel-interconnect structures. Thin Solid Films. 2004;460(1–2):167–74.CrossRef
3.
go back to reference Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5:52–5.CrossRefMATH Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5:52–5.CrossRefMATH
4.
go back to reference Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.CrossRef Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.CrossRef
5.
go back to reference Koester KJ, Ager JW III, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7:672–7.CrossRef Koester KJ, Ager JW III, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7:672–7.CrossRef
6.
go back to reference Chang YT, Chen CM, Tu MY, Chen HL, Chang SY, Tsai TC, Wang YT, Hsiao HL. Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue. J Mech Behav Biomed Mater. 2011;4(7):1412–20.CrossRef Chang YT, Chen CM, Tu MY, Chen HL, Chang SY, Tsai TC, Wang YT, Hsiao HL. Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue. J Mech Behav Biomed Mater. 2011;4(7):1412–20.CrossRef
7.
go back to reference Wang YT, Chang SY, Huang YC, Tsai TC, Chen CM, Lim CT. Nanomechanics insights into the performance of healthy and osteoporotic bones. Nano Lett. 2013;13(11):5247–54.CrossRef Wang YT, Chang SY, Huang YC, Tsai TC, Chen CM, Lim CT. Nanomechanics insights into the performance of healthy and osteoporotic bones. Nano Lett. 2013;13(11):5247–54.CrossRef
8.
go back to reference Chang SY, Chang TK. Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. J Appl Phys. 2007;101(3):033507.CrossRef Chang SY, Chang TK. Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. J Appl Phys. 2007;101(3):033507.CrossRef
9.
go back to reference Chang SY, Huang YC, Lin YM. Mechanical property and fracture behavior characterizations of 96.5 Sn-3.0 Ag-0.5 Cu solder joints. J Alloys Compd. 2010;490(1–2):508–14.CrossRef Chang SY, Huang YC, Lin YM. Mechanical property and fracture behavior characterizations of 96.5 Sn-3.0 Ag-0.5 Cu solder joints. J Alloys Compd. 2010;490(1–2):508–14.CrossRef
10.
go back to reference Sun CQ. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci. 2009;54:179–307.CrossRef Sun CQ. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci. 2009;54:179–307.CrossRef
11.
go back to reference Van Swygenhoven H. Grain boundaries and dislocations. Science. 2002;296:66–7.CrossRef Van Swygenhoven H. Grain boundaries and dislocations. Science. 2002;296:66–7.CrossRef
12.
go back to reference Schiǿtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301:1357–9.CrossRef Schiǿtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301:1357–9.CrossRef
13.
go back to reference Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.CrossRef Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.CrossRef
14.
go back to reference Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.CrossRef Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.CrossRef
15.
go back to reference Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.CrossRef Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.CrossRef
16.
17.
go back to reference Greer JR, De HJTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724.CrossRef Greer JR, De HJTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724.CrossRef
18.
go back to reference Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.CrossRef Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.CrossRef
19.
go back to reference Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.CrossRef Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.CrossRef
21.
go back to reference Chang SY, Lee YS, Hsiao HL, Chang TK. Mechanical properties and deformation behavior of amorphous nickel-phosphorous films measured by nanoindentation test. Metall Mater Trans A. 2006;37:2939–45.CrossRef Chang SY, Lee YS, Hsiao HL, Chang TK. Mechanical properties and deformation behavior of amorphous nickel-phosphorous films measured by nanoindentation test. Metall Mater Trans A. 2006;37:2939–45.CrossRef
22.
go back to reference Chang SY, Chang JY, Lin SJ, Tsai HC, Chang YS. Interface chemistry and adhesion strength between porous SiOCH low-k film and SiCN layers. J Electrochem Soc. 2008;155(2):G39–43.CrossRef Chang SY, Chang JY, Lin SJ, Tsai HC, Chang YS. Interface chemistry and adhesion strength between porous SiOCH low-k film and SiCN layers. J Electrochem Soc. 2008;155(2):G39–43.CrossRef
23.
go back to reference Chang SY, Lin SY, Huang YC, Wu CL. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surf Coat Technol. 2010;204(20):3307–14.CrossRef Chang SY, Lin SY, Huang YC, Wu CL. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surf Coat Technol. 2010;204(20):3307–14.CrossRef
24.
go back to reference Wang DS, Chang SY, Huang YC, Wu JB, Lai HJ, Leu MS. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces. Carbon. 2014;74:302–11.CrossRef Wang DS, Chang SY, Huang YC, Wu JB, Lai HJ, Leu MS. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces. Carbon. 2014;74:302–11.CrossRef
25.
go back to reference Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein J, McMurry PH, Girshick SL. Superhard silicon nanospheres. J Mech Phys Solids. 2003;51:979–92.CrossRef Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein J, McMurry PH, Girshick SL. Superhard silicon nanospheres. J Mech Phys Solids. 2003;51:979–92.CrossRef
26.
go back to reference Ross FM. In situ transmission electron microscopy. In: Hawkes PW, JCH S, editors. Science of microscopy. New York: Springer; 2007. Ross FM. In situ transmission electron microscopy. In: Hawkes PW, JCH S, editors. Science of microscopy. New York: Springer; 2007.
27.
go back to reference Dehm G, Howe JM, Zweck J, editors. In-situ electron microscopy: applications in physics, chemistry and materials science. Weinheim: Wiley-VCH; 2012. Dehm G, Howe JM, Zweck J, editors. In-situ electron microscopy: applications in physics, chemistry and materials science. Weinheim: Wiley-VCH; 2012.
28.
go back to reference Nili H, Kalantar-zadeh K, Bhaskaran M, Sriram S. In situ nanoindentation: probing nanoscale multifunctionality. Prog Mater Sci. 2013;58:1–29.CrossRef Nili H, Kalantar-zadeh K, Bhaskaran M, Sriram S. In situ nanoindentation: probing nanoscale multifunctionality. Prog Mater Sci. 2013;58:1–29.CrossRef
29.
go back to reference Yu Q, Legros M, Minor AM. In situ TEM nanomechanics. MRS Bull. 2015;40:62–8.CrossRef Yu Q, Legros M, Minor AM. In situ TEM nanomechanics. MRS Bull. 2015;40:62–8.CrossRef
30.
go back to reference Michler J, Arzt E. In situ indentation testing of elastomers. Acta Mater. 2008;56:4390–401.CrossRef Michler J, Arzt E. In situ indentation testing of elastomers. Acta Mater. 2008;56:4390–401.CrossRef
31.
go back to reference Wheeler JM, Raghavan R, Michler J. In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Mater Sci Eng A. 2011;528:8750–6.CrossRef Wheeler JM, Raghavan R, Michler J. In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Mater Sci Eng A. 2011;528:8750–6.CrossRef
32.
go back to reference Walley JL, Wheeler R, Uchic MD, Mills MJ. In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech. 2012;52:405–16.CrossRef Walley JL, Wheeler R, Uchic MD, Mills MJ. In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech. 2012;52:405–16.CrossRef
33.
go back to reference Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev Sci Instrum. 2013;84:045103.CrossRef Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev Sci Instrum. 2013;84:045103.CrossRef
34.
go back to reference Jin M, Minor AM, Stach EA, Morris JW Jr. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 2004;52:5381–7.CrossRef Jin M, Minor AM, Stach EA, Morris JW Jr. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 2004;52:5381–7.CrossRef
35.
go back to reference Minor AM, Syed Asif SA, Shan ZW, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater. 2006;5:697–702.CrossRef Minor AM, Syed Asif SA, Shan ZW, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater. 2006;5:697–702.CrossRef
36.
go back to reference De Hossen JTM, Soer WA, Minor AM, Shan ZW, Stach EA, Syed Asif SA, Warren OL. In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon. J Mater Sci. 2006;41:7704–19. De Hossen JTM, Soer WA, Minor AM, Shan ZW, Stach EA, Syed Asif SA, Warren OL. In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon. J Mater Sci. 2006;41:7704–19.
37.
go back to reference Liu Y, Karaman I, Wang H, Zhang X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv Mater. 2014;26:3893–8.CrossRef Liu Y, Karaman I, Wang H, Zhang X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv Mater. 2014;26:3893–8.CrossRef
38.
go back to reference Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary–mediated plasticity in nanocrystalline nickel. Science. 2004;305:654–7.CrossRef Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary–mediated plasticity in nanocrystalline nickel. Science. 2004;305:654–7.CrossRef
39.
go back to reference Wang ZL, Poncharal P, de Heer WA. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solids. 2000;61:1025–30.CrossRef Wang ZL, Poncharal P, de Heer WA. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solids. 2000;61:1025–30.CrossRef
40.
go back to reference Barth S, Harnagea C, Mathur S, Rosei F. The elastic moduli of oriented tin oxide nanowires. Nanotechnology. 2009;20:115705.CrossRef Barth S, Harnagea C, Mathur S, Rosei F. The elastic moduli of oriented tin oxide nanowires. Nanotechnology. 2009;20:115705.CrossRef
41.
go back to reference Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011;3:648–53.CrossRef Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011;3:648–53.CrossRef
42.
go back to reference Mook WM, Niederberger C, Bechelany M, Philippe L, Michler J. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21:055701.CrossRef Mook WM, Niederberger C, Bechelany M, Philippe L, Michler J. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21:055701.CrossRef
43.
go back to reference Deneen J, Mook WM, Minor AM, Gerberich WW, Carter CB. In situ deformation of silicon nanospheres. J Mater Sci. 2006;41:4477–83.CrossRef Deneen J, Mook WM, Minor AM, Gerberich WW, Carter CB. In situ deformation of silicon nanospheres. J Mater Sci. 2006;41:4477–83.CrossRef
44.
go back to reference Shan ZW, Adesso G, Cabot A, Sherburne MP, Syed Asif SA, Warren OL, Chrzan DC, Minor AM, Alivisatos AP. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat Mater. 2008;7:947–52.CrossRef Shan ZW, Adesso G, Cabot A, Sherburne MP, Syed Asif SA, Warren OL, Chrzan DC, Minor AM, Alivisatos AP. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat Mater. 2008;7:947–52.CrossRef
45.
go back to reference Issa I, Amodeo J, Réthoré J, Joly-Pottuz L, Esnouf C, Morthomas J, Perez M, Chevalier J, Masenelli-Varlot K. In situ investigation of MgO nanocube deformation at room temperature. Acta Mater. 2015;86:295–304.CrossRef Issa I, Amodeo J, Réthoré J, Joly-Pottuz L, Esnouf C, Morthomas J, Perez M, Chevalier J, Masenelli-Varlot K. In situ investigation of MgO nanocube deformation at room temperature. Acta Mater. 2015;86:295–304.CrossRef
46.
go back to reference Sun J, He L, Lo YC, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J. Liquid-like pseudoelasticity of sub-10-nm crystalline Ag particles. Nat Mater. 2014;13:1007–12.CrossRef Sun J, He L, Lo YC, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J. Liquid-like pseudoelasticity of sub-10-nm crystalline Ag particles. Nat Mater. 2014;13:1007–12.CrossRef
47.
go back to reference Gerberich WW, Mook W, Cordill MJ, Carter CB, Perrey CR, Heberlein JV, Girshick SL. Reverse plasticity in single crystal silicon nanospheres. Int J Plast. 2005;21:2391–405.CrossRefMATH Gerberich WW, Mook W, Cordill MJ, Carter CB, Perrey CR, Heberlein JV, Girshick SL. Reverse plasticity in single crystal silicon nanospheres. Int J Plast. 2005;21:2391–405.CrossRefMATH
48.
go back to reference Fang KC, Weng CI, Ju SP. An investigation into the mechanical properties of silicon nanoparticles using molecular dynamics simulations with parallel computing. J Nanopart Res. 2009;11:581–8.CrossRef Fang KC, Weng CI, Ju SP. An investigation into the mechanical properties of silicon nanoparticles using molecular dynamics simulations with parallel computing. J Nanopart Res. 2009;11:581–8.CrossRef
49.
go back to reference Gerberich WW, Michler J, Mook WM, Ghisleni R, Östlund F, Stauffer DD, Ballarini R. Scale effects for strength, ductility, and toughness in “brittle” materials. J Mater Res. 2009;24:898–906.CrossRef Gerberich WW, Michler J, Mook WM, Ghisleni R, Östlund F, Stauffer DD, Ballarini R. Scale effects for strength, ductility, and toughness in “brittle” materials. J Mater Res. 2009;24:898–906.CrossRef
50.
go back to reference Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305:986–9.CrossRef Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305:986–9.CrossRef
51.
go back to reference Volkert CA, Lilleodeen ET. Size effects in the deformation of sub-micron Au columns. Philos Mag. 2006;86:5567–79.CrossRef Volkert CA, Lilleodeen ET. Size effects in the deformation of sub-micron Au columns. Philos Mag. 2006;86:5567–79.CrossRef
52.
go back to reference Shan ZW, Mishra RK, Syed Asif SA, Warren OL, Minor AM. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7:115–9.CrossRef Shan ZW, Mishra RK, Syed Asif SA, Warren OL, Minor AM. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7:115–9.CrossRef
53.
go back to reference Kim JY, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum tantalum and niobium at the nanoscale. Acta Mater. 2010;58:2355–63.CrossRef Kim JY, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum tantalum and niobium at the nanoscale. Acta Mater. 2010;58:2355–63.CrossRef
54.
go back to reference Withey EA, Minor AM, Chrzan DC, Morris JW Jr, Kuramoto S. The deformation of gum metal through in situ compression of nanopillars. Acta Mater. 2010;58:2652–65.CrossRef Withey EA, Minor AM, Chrzan DC, Morris JW Jr, Kuramoto S. The deformation of gum metal through in situ compression of nanopillars. Acta Mater. 2010;58:2652–65.CrossRef
55.
go back to reference Chou HS, Du XH, Lee CJ, Huang JC. Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers. Intermetallics. 2011;19:1047–51.CrossRef Chou HS, Du XH, Lee CJ, Huang JC. Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers. Intermetallics. 2011;19:1047–51.CrossRef
56.
go back to reference Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, Wang YC, Lee JW, Liu FX, Liaw PK, Chen YC, Lee CM, Li CL, Rullyani C. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films. 2012;520:5097–122.CrossRef Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, Wang YC, Lee JW, Liu FX, Liaw PK, Chen YC, Lee CM, Li CL, Rullyani C. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films. 2012;520:5097–122.CrossRef
57.
go back to reference Ye J, Mishra RK, Pelton AR, Minor AM. Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 2010;58:490–8.CrossRef Ye J, Mishra RK, Pelton AR, Minor AM. Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 2010;58:490–8.CrossRef
58.
go back to reference Kunz A, Pathak S, Greer JR. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 2011;59:4416–24.CrossRef Kunz A, Pathak S, Greer JR. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 2011;59:4416–24.CrossRef
59.
go back to reference Jang D, Greer JR. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater. 2011;64:77–80.CrossRef Jang D, Greer JR. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater. 2011;64:77–80.CrossRef
60.
go back to reference Aitken ZH, Jang D, Weinberger CR, Greer JR. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature. Small. 2014;10(1):100–8.CrossRef Aitken ZH, Jang D, Weinberger CR, Greer JR. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature. Small. 2014;10(1):100–8.CrossRef
61.
go back to reference Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–10.CrossRef Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–10.CrossRef
62.
go back to reference Jang D, Cai C, Greer JR. Influence of homogeneous interfaces on the strength of 500 nm diameter Cu nanopillars. Nano Lett. 2011;11:1743–6.CrossRef Jang D, Cai C, Greer JR. Influence of homogeneous interfaces on the strength of 500 nm diameter Cu nanopillars. Nano Lett. 2011;11:1743–6.CrossRef
63.
go back to reference Jang D, Li X, Gao H, Greer JR. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol. 2012;7:594–601.CrossRef Jang D, Li X, Gao H, Greer JR. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol. 2012;7:594–601.CrossRef
64.
go back to reference Dayal P, Quadir MZ, Kong C, Savvides N, Hoffman M. Transition from dislocation controlled plasticity to grain boundary mediated shear in nanolayered aluminum/palladium thin films. Thin Solid Films. 2011;519:3213–20.CrossRef Dayal P, Quadir MZ, Kong C, Savvides N, Hoffman M. Transition from dislocation controlled plasticity to grain boundary mediated shear in nanolayered aluminum/palladium thin films. Thin Solid Films. 2011;519:3213–20.CrossRef
65.
go back to reference Ye J, Mishra RK, Sachdev AK, Minor AM. In situ TEM compression testing of Mg and Mg–0.2 wt.% Ce single crystals. Scr Mater. 2011;64:292–5.CrossRef Ye J, Mishra RK, Sachdev AK, Minor AM. In situ TEM compression testing of Mg and Mg–0.2 wt.% Ce single crystals. Scr Mater. 2011;64:292–5.CrossRef
66.
go back to reference Lee SW, Han SM, Nix WD. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 2009;57:4404–15.CrossRef Lee SW, Han SM, Nix WD. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 2009;57:4404–15.CrossRef
67.
go back to reference Yu Q, Shan ZW, Li J, Huang X, Xiao L, Sun J, Ma E. Strong crystal size effect on deformation twinning. Nature. 2010;463:335–8.CrossRef Yu Q, Shan ZW, Li J, Huang X, Xiao L, Sun J, Ma E. Strong crystal size effect on deformation twinning. Nature. 2010;463:335–8.CrossRef
68.
go back to reference Östlund F, Howie PR, Ghisleni R, Korte S, Leifer K, Clegg WJ, Michler J. Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos Mag. 2011;91:1190–9.CrossRef Östlund F, Howie PR, Ghisleni R, Korte S, Leifer K, Clegg WJ, Michler J. Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos Mag. 2011;91:1190–9.CrossRef
69.
go back to reference Cao W, Kundu A, Yu Z, Harmer MP, Vinci RP. Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr Mater. 2013;69(1):81–4.CrossRef Cao W, Kundu A, Yu Z, Harmer MP, Vinci RP. Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr Mater. 2013;69(1):81–4.CrossRef
70.
go back to reference Cao W, Marvel C, Yin D, Zhang Y, Cantwell P, Harmer MP, Luo J, Vinci RP. Correlations between microstructure, fracture morphology, and fracture toughness of nanocrystalline Ni–W alloys. Scr Mater. 2016;113:84–8.CrossRef Cao W, Marvel C, Yin D, Zhang Y, Cantwell P, Harmer MP, Luo J, Vinci RP. Correlations between microstructure, fracture morphology, and fracture toughness of nanocrystalline Ni–W alloys. Scr Mater. 2016;113:84–8.CrossRef
71.
go back to reference Vanstreels K, De Wolf I, Zahedmanesh H, Bender H, Gonzalez M, Lefebvre J, Bhowmick S. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests. Appl Phys Lett. 2014;105:213102.CrossRef Vanstreels K, De Wolf I, Zahedmanesh H, Bender H, Gonzalez M, Lefebvre J, Bhowmick S. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests. Appl Phys Lett. 2014;105:213102.CrossRef
72.
go back to reference Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D Appl Phys. 2006;39:311–27.CrossRef Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D Appl Phys. 2006;39:311–27.CrossRef
73.
go back to reference Sutter G, Ranc N. Flash temperature measurement during dry friction process at high sliding speed. Wear. 2010;268:1237–42.CrossRef Sutter G, Ranc N. Flash temperature measurement during dry friction process at high sliding speed. Wear. 2010;268:1237–42.CrossRef
74.
go back to reference Ma TB, Hu YZ, Wang H. Molecular dynamics simulation of shear induced graphitization of amorphous carbon films. Carbon. 2009;47:1953–7.CrossRef Ma TB, Hu YZ, Wang H. Molecular dynamics simulation of shear induced graphitization of amorphous carbon films. Carbon. 2009;47:1953–7.CrossRef
75.
go back to reference Merkle AP, Erdemir A, Eryilmaz OL, Johnson JA, Marks LD. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon. 2010;48:587–91.CrossRef Merkle AP, Erdemir A, Eryilmaz OL, Johnson JA, Marks LD. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon. 2010;48:587–91.CrossRef
76.
go back to reference Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11:757–66.CrossRef Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11:757–66.CrossRef
77.
go back to reference Oh SH, Legros M, Kiener D, Dehm G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater. 2009;8:95–100.CrossRef Oh SH, Legros M, Kiener D, Dehm G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater. 2009;8:95–100.CrossRef
78.
go back to reference Kobler A, Kashiwar A, Hahn H, Kübel C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy. 2013;128:68–81.CrossRef Kobler A, Kashiwar A, Hahn H, Kübel C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy. 2013;128:68–81.CrossRef
79.
go back to reference Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.CrossRef Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.CrossRef
80.
go back to reference Zhu Y, Xu F, Qin Q, Fung WY, Lu W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009;9:3934–9.CrossRef Zhu Y, Xu F, Qin Q, Fung WY, Lu W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009;9:3934–9.CrossRef
81.
go back to reference Kiener D, Grosinger W, Dehm G, Pippan R. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 2008;56:580–92.CrossRef Kiener D, Grosinger W, Dehm G, Pippan R. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 2008;56:580–92.CrossRef
82.
go back to reference Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 2011;11(9):3816–38202.CrossRef Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 2011;11(9):3816–38202.CrossRef
83.
go back to reference Chisholm C, Bei H, Lowry MB, Oh J, Syed Asif SA, Warren OL, Shan ZW, George EP, Minor AM. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 2012;60:2258–64.CrossRef Chisholm C, Bei H, Lowry MB, Oh J, Syed Asif SA, Warren OL, Shan ZW, George EP, Minor AM. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 2012;60:2258–64.CrossRef
84.
go back to reference Chen LY, He MR, Shin J, Richter G, Gianola GS. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater. 2015;14:707–14.CrossRef Chen LY, He MR, Shin J, Richter G, Gianola GS. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater. 2015;14:707–14.CrossRef
85.
go back to reference Bernal RA, Aghaei A, Lee S, Ryu S, Sohn K, Huang J, Cai W, Espinosa H. Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett. 2015;15:139–46.CrossRef Bernal RA, Aghaei A, Lee S, Ryu S, Sohn K, Huang J, Cai W, Espinosa H. Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett. 2015;15:139–46.CrossRef
86.
go back to reference Qin Q, Yin S, Cheng G, Li X, Chang TH, Richter G, Zhu Y, Gao H. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.CrossRef Qin Q, Yin S, Cheng G, Li X, Chang TH, Richter G, Zhu Y, Gao H. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.CrossRef
87.
go back to reference Seo JH, Park HS, Yoo Y, Seong TY, Li J, Ahn JP, Kim B, Choi IS. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 2013;13:5112–6.CrossRef Seo JH, Park HS, Yoo Y, Seong TY, Li J, Ahn JP, Kim B, Choi IS. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 2013;13:5112–6.CrossRef
88.
go back to reference Wang JW, Narayanan S, Huang JY, Zhang Z, Zhu T, Mao SX. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat Commun. 2013;4:2340.CrossRef Wang JW, Narayanan S, Huang JY, Zhang Z, Zhu T, Mao SX. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat Commun. 2013;4:2340.CrossRef
89.
go back to reference Lu Y, Song J, Huang JY, Lou J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011;4:1261–7.CrossRef Lu Y, Song J, Huang JY, Lou J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011;4:1261–7.CrossRef
90.
go back to reference Yue Y, Liu P, Zhang Z, Han X, Ma E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011;11:3151–5.CrossRef Yue Y, Liu P, Zhang Z, Han X, Ma E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011;11:3151–5.CrossRef
91.
go back to reference Yue Y, Chen N, Li X, Zhang S, Zhang Z, Chen M, Han X. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 2013;13:3812–6.CrossRef Yue Y, Chen N, Li X, Zhang S, Zhang Z, Chen M, Han X. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 2013;13:3812–6.CrossRef
92.
go back to reference Xiang B, Wang L, Liu G, Minor AM. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J Electrochem Soc. 2013;160(3):A415–9.CrossRef Xiang B, Wang L, Liu G, Minor AM. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J Electrochem Soc. 2013;160(3):A415–9.CrossRef
93.
go back to reference Kiener D, Motz C, Rester M, Jenko M, Dehm G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A. 2007;459:262–72.CrossRef Kiener D, Motz C, Rester M, Jenko M, Dehm G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A. 2007;459:262–72.CrossRef
94.
go back to reference Lai YH, Lee CJ, Cheng YT, Chou HS, Chen HM, Du XH, Chang CI, Huang JC, Jian SR, Jang JSC, Nieh TG. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr Mater. 2008;58:890–3.CrossRef Lai YH, Lee CJ, Cheng YT, Chou HS, Chen HM, Du XH, Chang CI, Huang JC, Jian SR, Jang JSC, Nieh TG. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr Mater. 2008;58:890–3.CrossRef
95.
go back to reference Yang Y, Ye JC, Lu J, Liu FX, Liaw PK. Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 2009;57:1613–23.CrossRef Yang Y, Ye JC, Lu J, Liu FX, Liaw PK. Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 2009;57:1613–23.CrossRef
Metadata
Title
In-Situ Nanomechanical Testing in Electron Microscopes
Author
Shou-Yi Chang
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_53

Premium Partners