Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2015

01-06-2015 | Original Paper

In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study

Authors: Rajan Choudhary, Sivasankar Koppala, Aviral Srivastava, Swamiappan Sasikumar

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A major problem in the field of hard tissue engineering is to develop a biomaterial which could allow the organ to regenerate itself completely by biological fixation. Silicate bioceramics are new hope in this field. Nanocrystalline larnite (Ca2SiO4) was prepared by sol–gel combustion method by using calcium nitrate/eggshell waste. XRD analysis of the synthesized product shows the formation of single phasic larnite and FT-IR spectrum confirms the presence of characteristic functional groups of larnite. In vitro bioactivity of different compositional ratio of larnite/chitosan has been investigated to study the influence of the ratio of constituents of composite on bioactivity. XRD pattern of the composite surface after bioactivity study reveals that the composite which mimics the ratio of bioceramic to biopolymer in natural bone shows good bioactivity and remarkable hydroxyapatite layer deposition. SEM images shows the hydroxyapatite particles deposited on the surface of eggshell derived larnite composite is highly agglomerated with the average particle size of 3–5 nm.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRef
2.
go back to reference Lakshmi R, Velmurugan V, Sasikumar S (2013) Preparation and phase evolution of wollastonite by sol–gel combustion method using sucrose as the fuel. Combust Sci Technol 185(12):1777–1785CrossRef Lakshmi R, Velmurugan V, Sasikumar S (2013) Preparation and phase evolution of wollastonite by sol–gel combustion method using sucrose as the fuel. Combust Sci Technol 185(12):1777–1785CrossRef
3.
go back to reference Udduttula A, Koppala S, Sasikumar S (2013) Sol–gel combustion synthesis of nanocrystalline wollastonite by using glycine as a fuel and its in vitro bioactivity studies. Trans Ind Ceram Soc 72(4):257–260CrossRef Udduttula A, Koppala S, Sasikumar S (2013) Sol–gel combustion synthesis of nanocrystalline wollastonite by using glycine as a fuel and its in vitro bioactivity studies. Trans Ind Ceram Soc 72(4):257–260CrossRef
4.
go back to reference Bohner M (2009) Silicon-substituted calcium phosphates—A critical view. Biomaterials 30:6403–6406CrossRef Bohner M (2009) Silicon-substituted calcium phosphates—A critical view. Biomaterials 30:6403–6406CrossRef
5.
go back to reference Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites: a method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516CrossRef Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites: a method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516CrossRef
6.
go back to reference Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) Structural analysis of Si substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy (XPS). J Mater Sci Mater Med 13(12):1123–1127CrossRef Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) Structural analysis of Si substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy (XPS). J Mater Sci Mater Med 13(12):1123–1127CrossRef
7.
go back to reference Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206CrossRef Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PA (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206CrossRef
8.
go back to reference Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2004) Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials 25:3303CrossRef Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2004) Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone–implant interface. Biomaterials 25:3303CrossRef
10.
go back to reference Salinas AJ, Vallet-Regi M, Izquierdo-barba I (2001) Biomimetic apatite deposition on calcium silicate gel glasses. J Sol–Gel Sci Technol 21:13–25CrossRef Salinas AJ, Vallet-Regi M, Izquierdo-barba I (2001) Biomimetic apatite deposition on calcium silicate gel glasses. J Sol–Gel Sci Technol 21:13–25CrossRef
11.
go back to reference Martinez A, Izquierdo-Barba I, Vallet-Regi M (2000) Bioactivity of a CaO–SiO2 binary glasses system. Chem Mater 12:3080–3088CrossRef Martinez A, Izquierdo-Barba I, Vallet-Regi M (2000) Bioactivity of a CaO–SiO2 binary glasses system. Chem Mater 12:3080–3088CrossRef
12.
go back to reference Gou Z, Chang J (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 24:93–99CrossRef Gou Z, Chang J (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 24:93–99CrossRef
13.
go back to reference Gou Z, Chang J, Zhai W (2005) Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc 25:1507–1514CrossRef Gou Z, Chang J, Zhai W (2005) Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc 25:1507–1514CrossRef
14.
go back to reference Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W, Chang J, Chen L (2011) Mechanical properties and bioactivity of β-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceram Int 37:2459–2465CrossRef Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W, Chang J, Chen L (2011) Mechanical properties and bioactivity of β-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceram Int 37:2459–2465CrossRef
15.
go back to reference Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968CrossRef Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 23:963–968CrossRef
16.
go back to reference Cheng W, Li H, Chang J (2005) Fabrication and characterization of β dicalcium silicate/poly(D, L-lactic acid) composite scaffolds. Mater Lett 59:2214–2218CrossRef Cheng W, Li H, Chang J (2005) Fabrication and characterization of β dicalcium silicate/poly(D, L-lactic acid) composite scaffolds. Mater Lett 59:2214–2218CrossRef
17.
go back to reference Sprio S, Tampieri A, Celotti G, Landi E (2009) Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater 2:147–155CrossRef Sprio S, Tampieri A, Celotti G, Landi E (2009) Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater 2:147–155CrossRef
18.
go back to reference Verma N, Kumar V, Bansal MC (2012) Utilization of egg shell waste in cellulose production by Neurospora crassa under wheat bran-based solid state fermentation. Pol J Environ Stud 21(2):491–497 Verma N, Kumar V, Bansal MC (2012) Utilization of egg shell waste in cellulose production by Neurospora crassa under wheat bran-based solid state fermentation. Pol J Environ Stud 21(2):491–497
19.
go back to reference Van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRef Van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRef
20.
go back to reference Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37(2):207–212CrossRef Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37(2):207–212CrossRef
21.
go back to reference Prabakaran K, Balamurugan A, Rajeswari S (2005) Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci 28(2):115–119CrossRef Prabakaran K, Balamurugan A, Rajeswari S (2005) Development of calcium phosphate based apatite from hen’s eggshell. Bull Mater Sci 28(2):115–119CrossRef
22.
go back to reference Sasikumar S, Vijayaraghavan R (2006) Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends Biomater Artif Organs 19(2):70–73 Sasikumar S, Vijayaraghavan R (2006) Low temperature synthesis of nanocrystalline hydroxyapatite from egg shells by combustion method. Trends Biomater Artif Organs 19(2):70–73
23.
go back to reference Rivera EM, Araiza M, Brostow W, Castano VM, Estrada JRD, Hernandez R, Rodriguez JR (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41:128–134CrossRef Rivera EM, Araiza M, Brostow W, Castano VM, Estrada JRD, Hernandez R, Rodriguez JR (1999) Synthesis of hydroxyapatite from eggshells. Mater Lett 41:128–134CrossRef
24.
go back to reference Goloshchapov DL, Kashkarov VM, Rumyantseva NA, Seredin PV, Lenshin AS, Agapov BL, Domashevskaya EP (2013) Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceram Int 39:4539–4549CrossRef Goloshchapov DL, Kashkarov VM, Rumyantseva NA, Seredin PV, Lenshin AS, Agapov BL, Domashevskaya EP (2013) Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceram Int 39:4539–4549CrossRef
25.
go back to reference Ho W-F, Hsu H-C, Hsu S-K, Hung C-W, Wu S-C (2013) Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int 39:6467–6473CrossRef Ho W-F, Hsu H-C, Hsu S-K, Hung C-W, Wu S-C (2013) Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int 39:6467–6473CrossRef
26.
go back to reference Samal SS, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. J Miner Mater Charact Eng 7(4):355–370 Samal SS, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. J Miner Mater Charact Eng 7(4):355–370
27.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
28.
go back to reference Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211CrossRef Shikinami Y, Okuno M (2001) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part II: practical properties of miniscrews and miniplates. Biomaterials 22:3197–3211CrossRef
29.
go back to reference Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biom 1:3–18 Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biom 1:3–18
30.
go back to reference Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) Cell culture test of TCP/CPLA composite. J Biomed Mater Res 48:108–110CrossRef Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) Cell culture test of TCP/CPLA composite. J Biomed Mater Res 48:108–110CrossRef
31.
go back to reference Laurencin CT, Attawia MA, Elgendy HE, Herbert KM (1996) Tissue engineered bone regeneration using degradable polymers: the formation of mineralized matrices. Bone 19:S93–S99CrossRef Laurencin CT, Attawia MA, Elgendy HE, Herbert KM (1996) Tissue engineered bone regeneration using degradable polymers: the formation of mineralized matrices. Bone 19:S93–S99CrossRef
32.
go back to reference Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evaluation of novel bioactive composites based on Bioglass (R)-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A 67A:1401–1411CrossRef Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evaluation of novel bioactive composites based on Bioglass (R)-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A 67A:1401–1411CrossRef
33.
go back to reference Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500CrossRef Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500CrossRef
34.
go back to reference Stamboulis AG, Boccaccini AR, Hench LL (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4:105–109CrossRef Stamboulis AG, Boccaccini AR, Hench LL (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4:105–109CrossRef
35.
go back to reference Chen Q, Zhu C, Thouas GA (2012) Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 1:2CrossRef Chen Q, Zhu C, Thouas GA (2012) Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 1:2CrossRef
36.
go back to reference Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214CrossRef Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214CrossRef
37.
go back to reference Shogren RL, Bagley EB (1999) Natural polymers as advanced materials: some research needs and directions. In: Iman SH, Greene RV, Zaidi BR (ed), Biopolymers. Utilizing nature’s advanced materials, ACS symposium series 723. Oxford University Press, Cary Shogren RL, Bagley EB (1999) Natural polymers as advanced materials: some research needs and directions. In: Iman SH, Greene RV, Zaidi BR (ed), Biopolymers. Utilizing nature’s advanced materials, ACS symposium series 723. Oxford University Press, Cary
38.
go back to reference Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440CrossRef Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440CrossRef
39.
go back to reference Han B, Huang LLH, Cheung D, Cordoba F, Nimni M (1999) In: Zilla P, Greisler HP (eds) Polypeptide growth factors with a collagen binding domain: Their potential for tissue repair and organ regeneration. Tissue engineering of vascular prosthetic grafts. RG Landes, Austin Han B, Huang LLH, Cheung D, Cordoba F, Nimni M (1999) In: Zilla P, Greisler HP (eds) Polypeptide growth factors with a collagen binding domain: Their potential for tissue repair and organ regeneration. Tissue engineering of vascular prosthetic grafts. RG Landes, Austin
40.
go back to reference Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M et al (2004) Influence of different collagen species on physicochemical properties of crosslinked collagen matrices. Biomaterials 25(14):2831–2841CrossRef Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M et al (2004) Influence of different collagen species on physicochemical properties of crosslinked collagen matrices. Biomaterials 25(14):2831–2841CrossRef
41.
go back to reference Holme HK, Davidsen L, Kristiansen A, Smidsrod O (2008) Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664CrossRef Holme HK, Davidsen L, Kristiansen A, Smidsrod O (2008) Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr Polym 73:656–664CrossRef
42.
go back to reference Suh JKF, Matthew HWT (2000) Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598CrossRef Suh JKF, Matthew HWT (2000) Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598CrossRef
43.
go back to reference Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93:256–262CrossRef Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohydr Polym 93:256–262CrossRef
44.
go back to reference Huang D, Zuo Y, Zou Q, Zhang L, Li J, Cheng L, Shen J, Li Y (2011) Antibacterial chitosan coating on nano-hydroxyapatite/Polyamide66 porous bone scaffold for drug delivery. J Biomater Sci Polym Ed 22(7):931–944CrossRef Huang D, Zuo Y, Zou Q, Zhang L, Li J, Cheng L, Shen J, Li Y (2011) Antibacterial chitosan coating on nano-hydroxyapatite/Polyamide66 porous bone scaffold for drug delivery. J Biomater Sci Polym Ed 22(7):931–944CrossRef
45.
go back to reference Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31 Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31
46.
go back to reference Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979CrossRef Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979CrossRef
47.
go back to reference Krithiga G, Sastry TP (2011) Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. Bull Mater Sci 34(1):177–181CrossRef Krithiga G, Sastry TP (2011) Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder. Bull Mater Sci 34(1):177–181CrossRef
48.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
49.
go back to reference Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids 120:138–151CrossRef Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non Cryst Solids 120:138–151CrossRef
50.
go back to reference Cho S-B, Nakanishi K, Kokubo T, Soga N (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78(7):1769–1774CrossRef Cho S-B, Nakanishi K, Kokubo T, Soga N (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78(7):1769–1774CrossRef
51.
go back to reference Nalwa HS (2003) Handbook of organic—inorganic hybrid materials and nanocomposites Vol 1. Hybrid materials. American Scientific Publishers Nalwa HS (2003) Handbook of organic—inorganic hybrid materials and nanocomposites Vol 1. Hybrid materials. American Scientific Publishers
52.
go back to reference Iler RK (1979) The chemistry of silica. Wiley, New York Iler RK (1979) The chemistry of silica. Wiley, New York
53.
go back to reference Bhatkar VB, Bhatkar NV (2011) Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mater Sci 34(6):1281–1284CrossRef Bhatkar VB, Bhatkar NV (2011) Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mater Sci 34(6):1281–1284CrossRef
54.
go back to reference Klug H, Alexander L (1962) X-Ray diffraction procedures. Wiley, New York Klug H, Alexander L (1962) X-Ray diffraction procedures. Wiley, New York
55.
go back to reference Kalinkin AM, Boldyrev VV, Politovaa AA, Kalinkina EV, Makarov VN, Kalinnikov VT (2003) Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Phys Chem 29(4):410–414CrossRef Kalinkin AM, Boldyrev VV, Politovaa AA, Kalinkina EV, Makarov VN, Kalinnikov VT (2003) Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Phys Chem 29(4):410–414CrossRef
56.
go back to reference Tilekar G, Shinde K, Kale K, Raskar R, Gaikwad A (2011) The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate. Front Chem Sci Eng 5(4):477–491CrossRef Tilekar G, Shinde K, Kale K, Raskar R, Gaikwad A (2011) The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate. Front Chem Sci Eng 5(4):477–491CrossRef
57.
go back to reference Yarlagadda PK, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Bio-Med Mater Eng 15(3):159–177 Yarlagadda PK, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Bio-Med Mater Eng 15(3):159–177
58.
go back to reference Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442CrossRef Yunos DM, Bretcanu O, Boccaccini AR (2008) Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 43:4433–4442CrossRef
59.
go back to reference Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res Part B 83(1):153–160CrossRef Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res Part B 83(1):153–160CrossRef
60.
61.
go back to reference Lin K-L, Chang J, Lu J-X, Gao J-H, Zeng Y (2006) Fabrication and characterization of β-Ca3(PO4)2/CaSiO3 composite bioceramics. J Inorg Mater 21(6):1429–1434 Lin K-L, Chang J, Lu J-X, Gao J-H, Zeng Y (2006) Fabrication and characterization of β-Ca3(PO4)2/CaSiO3 composite bioceramics. J Inorg Mater 21(6):1429–1434
62.
go back to reference Zhao Y, Ning C, Chang J (2009) Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J Sol–Gel Sci Technol 52:69–74CrossRef Zhao Y, Ning C, Chang J (2009) Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J Sol–Gel Sci Technol 52:69–74CrossRef
63.
go back to reference Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRef Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRef
64.
go back to reference Kay S, Thapa A, Haberstroh KM, Webster TJ (2002) Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8:753–761CrossRef Kay S, Thapa A, Haberstroh KM, Webster TJ (2002) Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8:753–761CrossRef
65.
go back to reference Palin E, Liu HN, Webster TJ (2005) Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 16(9):1828–1835CrossRef Palin E, Liu HN, Webster TJ (2005) Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 16(9):1828–1835CrossRef
66.
go back to reference Alves NM, Leonor IB, Azevedo HS, Reis RL, Mano JF (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20:2911–2921CrossRef Alves NM, Leonor IB, Azevedo HS, Reis RL, Mano JF (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20:2911–2921CrossRef
Metadata
Title
In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study
Authors
Rajan Choudhary
Sivasankar Koppala
Aviral Srivastava
Swamiappan Sasikumar
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2015
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3642-3

Other articles of this Issue 3/2015

Journal of Sol-Gel Science and Technology 3/2015 Go to the issue

Premium Partners