Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

20-02-2019 | Issue 3/2019

Journal of Materials Engineering and Performance 3/2019

In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications

Journal:
Journal of Materials Engineering and Performance > Issue 3/2019
Authors:
Mahmood Razzaghi, Masoud Kasiri-Asgarani, Hamid Reza Bakhsheshi-Rad, Hamid Ghayour
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A class of biodegradable Mg-3Zn-xAg nanocomposites was presented in the present study with the assessments for implant application. The evaluations included the effects of increasing the Ag content from 0.5 to 3 wt.% on the corrosion behavior, mechanical properties, antibacterial activity and cytotoxicity of Mg-3Zn-xAg nanocomposite. Microstructural analysis revealed the secondary phase intermetallic Mg54Ag17 along the grain boundaries, with grain refinement as a result of increasing the Ag concentration. 0.5 wt.% Ag results in increasing the compressive strength and elongation; however, further addition decreases the compressive strength. The nanocomposite samples were verified for the improved antimicrobial activity by utilizing both E. coli and S. aureus bacteria, the growth of which was suppressed around all Ag-containing nanocomposites, whereas bacterial proliferations were detected around the Mg-3Zn nanocomposite. The escalating levels of Ag in the nanocomposite resulted in the elevated antimicrobial effect. Cell adhesion and proliferation were not significantly influenced by the inclusion of 0.5-1 wt% Ag into Mg-3Zn nanocomposite; however, cell adhesion and proliferation were lower on the surfaces of the nanocomposite containing 2-3 wt.% Ag counterparts. According to the mechanical, corrosion and biological assessments in the current research, it can be concluded that the nanocomposite containing 0.5 wt.% Ag can be properly applied as an orthopedic implant biomaterial.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Journal of Materials Engineering and Performance 3/2019 Go to the issue

Premium Partner

    Image Credits