Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

In Vivo, In Vitro, In Silico: Computational Tools for Product and Process Design in Tissue Engineering

Author : Liesbet Geris

Published in: Computational Modeling in Tissue Engineering

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter aims to provide an introduction to how engineering tools in general and computational models in particular can contribute to advancing the tissue engineering (TE) field. After a description of the current state of the art of TE, the developmental engineering paradigm is briefly discussed. Subsequently an overview is provided of different model categories that focus on different aspects of TE. These categories consists of the models that focus on either the TE product, the TE process or the in vivo results obtained after implantation. Generally, in all these models the aim is firstly to understand the biological process at hand and secondly to design strategies in silico to enhance the desired in vitro or in vivo behaviour. Finally, the need for quantification and parameter determination is discussed along with the computational tools and models that can be used to design the thereto required experiments in the most intelligent way.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993)CrossRef Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993)CrossRef
2.
go back to reference Meijer, G., de Bruijn, J.D., Koole, R., van Blitterswijk, C.A.: Cell-based bone tissue engineering. PLoS Med. 4, e9 (2007)CrossRef Meijer, G., de Bruijn, J.D., Koole, R., van Blitterswijk, C.A.: Cell-based bone tissue engineering. PLoS Med. 4, e9 (2007)CrossRef
3.
go back to reference Archer, R., Williams, D.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23, 1353–1355 (2005)CrossRef Archer, R., Williams, D.: Why tissue engineering needs process engineering. Nat. Biotechnol. 23, 1353–1355 (2005)CrossRef
4.
go back to reference Ingber, D.E., Mow, V.C., Butler, D., Niklason, L., Huard, J., Mao, J., Yannas, I., Kaplan, D., Vunjak-Novakovic, G.: Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 12, 3265–3283 (2006)CrossRef Ingber, D.E., Mow, V.C., Butler, D., Niklason, L., Huard, J., Mao, J., Yannas, I., Kaplan, D., Vunjak-Novakovic, G.: Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 12, 3265–3283 (2006)CrossRef
5.
go back to reference Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. Part B Rev. 15(4), 395–422 (2009)CrossRef Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. Part B Rev. 15(4), 395–422 (2009)CrossRef
6.
go back to reference Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. Part B Rev. 15(4), 381–394 (2009)CrossRef Lenas, P., Moos, M., Luyten, F.P.: Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. Part B Rev. 15(4), 381–394 (2009)CrossRef
7.
go back to reference Lenas, P., Luyten, F.: An emerging paradigm in tissue engineering: from chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages. Ind. Eng. Chem. Res. 50(2), 482–522 (2011)CrossRef Lenas, P., Luyten, F.: An emerging paradigm in tissue engineering: from chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages. Ind. Eng. Chem. Res. 50(2), 482–522 (2011)CrossRef
8.
go back to reference Lenas, P., Luyten, F.P., Doblare, M., Nicodemou-Lena, E., Lanzara, A.E.: Modularity in developmental biology and artificial organs: a missing concept in tissue engineering. Artif. Organs 35(6), 656–662 (2001)CrossRef Lenas, P., Luyten, F.P., Doblare, M., Nicodemou-Lena, E., Lanzara, A.E.: Modularity in developmental biology and artificial organs: a missing concept in tissue engineering. Artif. Organs 35(6), 656–662 (2001)CrossRef
9.
go back to reference Kronenberg, H.M.: PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 1068, 1–13 (2006)CrossRef Kronenberg, H.M.: PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 1068, 1–13 (2006)CrossRef
10.
go back to reference Kronenberg, H.M.: Developmental regulation of the growth plate. Nature 423, 332–336 (2003)CrossRef Kronenberg, H.M.: Developmental regulation of the growth plate. Nature 423, 332–336 (2003)CrossRef
11.
go back to reference Solomon, L.A., Bérubé, N.G., Beier, F.: Transcriptional regulators of chondrocyte hypertrophy. Birth Defects Res. C Embryo Today 84, 123–130 (2008)CrossRef Solomon, L.A., Bérubé, N.G., Beier, F.: Transcriptional regulators of chondrocyte hypertrophy. Birth Defects Res. C Embryo Today 84, 123–130 (2008)CrossRef
12.
go back to reference Burdan, F., Szumi, J., Korobowicz, A., Farooquee, R., Patel, S., Patel, A., Dave, A., Szumi, M., Solecki, M., Klepacz, R., Dudka, J.: Morphology and physiology of the epiphyseal growth plate. Folia Histochem. Cytobiol. 47, 5–16 (2009)CrossRef Burdan, F., Szumi, J., Korobowicz, A., Farooquee, R., Patel, S., Patel, A., Dave, A., Szumi, M., Solecki, M., Klepacz, R., Dudka, J.: Morphology and physiology of the epiphyseal growth plate. Folia Histochem. Cytobiol. 47, 5–16 (2009)CrossRef
13.
go back to reference Luyten, F.P., Dell’Accio, F., De Bari, C.: Skeletal tissue engineering: opportunities and challenges. Best Pract. Res. Clin. Rheumatol. 15(5), 759–770 (2001)CrossRef Luyten, F.P., Dell’Accio, F., De Bari, C.: Skeletal tissue engineering: opportunities and challenges. Best Pract. Res. Clin. Rheumatol. 15(5), 759–770 (2001)CrossRef
14.
go back to reference Shapiro, F.: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell Mater. 15, 53–76 (2008) Shapiro, F.: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cell Mater. 15, 53–76 (2008)
15.
go back to reference Reddi, A.H.: Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic materials. Tissue Eng. 6(4), 351–359 (2000)CrossRef Reddi, A.H.: Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic materials. Tissue Eng. 6(4), 351–359 (2000)CrossRef
16.
go back to reference Hunziker, E.B.: Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6), 432–463 (2002) Hunziker, E.B.: Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10(6), 432–463 (2002)
17.
go back to reference Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87(1–2), 57–66 (1999)CrossRef Ferguson, C., Alpern, E., Miclau, T., Helms, J.A.: Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87(1–2), 57–66 (1999)CrossRef
18.
go back to reference Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A., Mooney, D.J.: Engineering growing tissues. Proc. Natl. Acad. Sci. U S A 99, 12025–12030 (2002)CrossRef Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A., Mooney, D.J.: Engineering growing tissues. Proc. Natl. Acad. Sci. U S A 99, 12025–12030 (2002)CrossRef
19.
go back to reference Jukes, J.M., Both, S.K., Leusink, A., Sterk, L.M., van Blitterswijk, C.A., de Boer, J.: Endochondral bone tissue engineering using embryonic stem cells. Proc. Natl. Acad. Sci. U S A 105(19), 6840–6845 (2008)CrossRef Jukes, J.M., Both, S.K., Leusink, A., Sterk, L.M., van Blitterswijk, C.A., de Boer, J.: Endochondral bone tissue engineering using embryonic stem cells. Proc. Natl. Acad. Sci. U S A 105(19), 6840–6845 (2008)CrossRef
20.
go back to reference Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherberich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A., Martin, I.: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U S A 107(16), 7251–7256 (2010)CrossRef Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherberich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A., Martin, I.: Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. U S A 107(16), 7251–7256 (2010)CrossRef
21.
go back to reference Weiss, H.E., Roberts, S.J., Schrooten, J., Luyten, F.P.: A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng. Part A (2012). doi:10.1089/ten.tea.2011.0602 Weiss, H.E., Roberts, S.J., Schrooten, J., Luyten, F.P.: A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng. Part A (2012). doi:10.​1089/​ten.​tea.​2011.​0602
22.
go back to reference Martin, I., Smith, T., Wendt, D.: Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 27, 495–502 (2009)CrossRef Martin, I., Smith, T., Wendt, D.: Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 27, 495–502 (2009)CrossRef
23.
go back to reference Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., Luyten, F.P.: The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32(19), 4393–4405 (2011)CrossRef Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., Luyten, F.P.: The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32(19), 4393–4405 (2011)CrossRef
24.
go back to reference Kerkhofs, J., Roberts, S.J., Luyten, F.P., Van Oosterwyck, H., Geris, L.: Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS ONE 7(4), e34729 (2012)CrossRef Kerkhofs, J., Roberts, S.J., Luyten, F.P., Van Oosterwyck, H., Geris, L.: Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS ONE 7(4), e34729 (2012)CrossRef
25.
go back to reference Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)CrossRef Geris, L., Van Liedekerke, P., Smeets, B., Tijskens, E., Ramon, H.: A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5), 887–892 (2010)CrossRef
26.
go back to reference Peiffer, V., Gerisch, A., Vandepitte, D., Van Oosterwyck, H., Geris, L.: A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10(3), 383–395 (2011)CrossRef Peiffer, V., Gerisch, A., Vandepitte, D., Van Oosterwyck, H., Geris, L.: A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10(3), 383–395 (2011)CrossRef
27.
go back to reference Carlier, A., Chai, Y.C., Moesen, M., Theys, T., Schrooten, J., Van Oosterwyck, H., Geris, L.: Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater. 7(10), 3573–3585 (2011)CrossRef Carlier, A., Chai, Y.C., Moesen, M., Theys, T., Schrooten, J., Van Oosterwyck, H., Geris, L.: Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater. 7(10), 3573–3585 (2011)CrossRef
28.
go back to reference Geris, L., Ashbourn, J.M.A., Clarke, T.: Continuum-level modelling of cellular adhesion and matrix production in aggregates. Comput. Method Biomech. Biomed. Eng. 14(5), 403–410 (2011)CrossRef Geris, L., Ashbourn, J.M.A., Clarke, T.: Continuum-level modelling of cellular adhesion and matrix production in aggregates. Comput. Method Biomech. Biomed. Eng. 14(5), 403–410 (2011)CrossRef
29.
go back to reference Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008)CrossRef Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251(1), 137–158 (2008)CrossRef
30.
go back to reference Geris, L., Vander Sloten, J., Van Oosterwyck, H.: Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech. Model. Mechanobiol. 9(6), 713–724 (2010)CrossRef Geris, L., Vander Sloten, J., Van Oosterwyck, H.: Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech. Model. Mechanobiol. 9(6), 713–724 (2010)CrossRef
31.
go back to reference Israelowitz, M., Rizvi, S.W.H., Weyand, B., Gille, C., von Schroeder, H.P.: Protein modeling and surface folding by limiting the degrees of freedom (2012). doi:10.1007/8415_2012_141 Israelowitz, M., Rizvi, S.W.H., Weyand, B., Gille, C., von Schroeder, H.P.: Protein modeling and surface folding by limiting the degrees of freedom (2012). doi:10.​1007/​8415_​2012_​141
33.
go back to reference Lambrechts, D., Schrooten, J., Van de Putte, T., Van Oosterwyck, H.: Computational modeling of mass transport and its relation to cell behavior in tissue engineering constructs (2012). doi:10.1007/8415_2012_139 Lambrechts, D., Schrooten, J., Van de Putte, T., Van Oosterwyck, H.: Computational modeling of mass transport and its relation to cell behavior in tissue engineering constructs (2012). doi:10.​1007/​8415_​2012_​139
35.
go back to reference Song, M.J., Dean, D., Knothe Tate, M.L.: Computational modeling of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals (2012). doi:10.1007/8415_2012_138 Song, M.J., Dean, D., Knothe Tate, M.L.: Computational modeling of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals (2012). doi:10.​1007/​8415_​2012_​138
36.
38.
go back to reference Sasaki, H., Matsuoka, F., Yamamoto, W., Kojima, K., Honda, H., Kato, R.: Image-based cell quality assessment: modeling of cell morphology and quality for clinical cell therapy (2012). doi:10.1007/8415_2012_132 Sasaki, H., Matsuoka, F., Yamamoto, W., Kojima, K., Honda, H., Kato, R.: Image-based cell quality assessment: modeling of cell morphology and quality for clinical cell therapy (2012). doi:10.​1007/​8415_​2012_​132
39.
go back to reference Geris, L., Reed, A.A., Vander Sloten, J., Simpson, A.H., Van Oosterwyck, H.: Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput. Biol. 6(9), e1000915 (2010)CrossRef Geris, L., Reed, A.A., Vander Sloten, J., Simpson, A.H., Van Oosterwyck, H.: Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput. Biol. 6(9), e1000915 (2010)CrossRef
40.
go back to reference Karim, M.N., Hodge, D., Simon, L.: Data-based modeling and analysis of bioprocesses: some real experiences. Biotechnol. Prog. 19(5), 1591–1605 (2003)CrossRef Karim, M.N., Hodge, D., Simon, L.: Data-based modeling and analysis of bioprocesses: some real experiences. Biotechnol. Prog. 19(5), 1591–1605 (2003)CrossRef
41.
go back to reference Wendt, D., Riboldi, S.A., Cioffi, M., Martin, I.: Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv. Mater. 21(32–33), 3352–3367 (2009)CrossRef Wendt, D., Riboldi, S.A., Cioffi, M., Martin, I.: Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv. Mater. 21(32–33), 3352–3367 (2009)CrossRef
42.
go back to reference Camacho, E.F., Bordons, C.: Model Predictive Control. Springer-Verlag, London (1999)CrossRef Camacho, E.F., Bordons, C.: Model Predictive Control. Springer-Verlag, London (1999)CrossRef
43.
go back to reference Young, P.: Data-based mechanistic modeling, generalised sensitivity and dominant mode analysis. Comput. Phys. Commun. 117, 113–129 (1999)CrossRef Young, P.: Data-based mechanistic modeling, generalised sensitivity and dominant mode analysis. Comput. Phys. Commun. 117, 113–129 (1999)CrossRef
44.
go back to reference Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)MATHCrossRef Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)MATHCrossRef
45.
go back to reference Huang, Z., Chu, Y., Hahn, J.: Model simplification procedure for signal transduction pathway models: an application to IL-6 signaling. Chem. Eng. Sci. 65(6), 1964–1975 (2010)CrossRef Huang, Z., Chu, Y., Hahn, J.: Model simplification procedure for signal transduction pathway models: an application to IL-6 signaling. Chem. Eng. Sci. 65(6), 1964–1975 (2010)CrossRef
47.
50.
go back to reference Geris, L., Vander Sloten, J., Van Oosterwyck, H.: In silico biology of bone modeling and remodeling—regeneration. Philos. Trans. R. Soc. A 367(1895), 2031–2053 (2009)CrossRef Geris, L., Vander Sloten, J., Van Oosterwyck, H.: In silico biology of bone modeling and remodeling—regeneration. Philos. Trans. R. Soc. A 367(1895), 2031–2053 (2009)CrossRef
51.
52.
go back to reference Reina-Roma, E., Valero, C., Borau, C., Rey, R., Javierre, E., Gomez-Benito, M.J., Dominguez, J., Garcia-Aznar, J.M.: Mechanobiological modelling of angiogenesis impact on tissue engineering and bone regeneration (2012). doi:10.1007/8415_2011_111 Reina-Roma, E., Valero, C., Borau, C., Rey, R., Javierre, E., Gomez-Benito, M.J., Dominguez, J., Garcia-Aznar, J.M.: Mechanobiological modelling of angiogenesis impact on tissue engineering and bone regeneration (2012). doi:10.​1007/​8415_​2011_​111
57.
go back to reference Faratian, D., Goltsov, A., Lebedeva, G., Sorokin, A., Moodie, S., Mullen, P., Kay, C., Um, I.H., Langdon, S., Goryanin, I., Harrison, D.J.: Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res. 69(16), 6713–6720 (2009)CrossRef Faratian, D., Goltsov, A., Lebedeva, G., Sorokin, A., Moodie, S., Mullen, P., Kay, C., Um, I.H., Langdon, S., Goryanin, I., Harrison, D.J.: Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res. 69(16), 6713–6720 (2009)CrossRef
58.
go back to reference Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 438–459 (2010)CrossRef Edelman, L.B., Eddy, J.A., Price, N.D.: In silico models of cancer. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 438–459 (2010)CrossRef
59.
go back to reference von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188–192 (2000)CrossRef von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188–192 (2000)CrossRef
60.
go back to reference Von Dassow, G., Odell, G.M.: Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294(3), 179–215 (2002)CrossRef Von Dassow, G., Odell, G.M.: Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. J. Exp. Zool. 294(3), 179–215 (2002)CrossRef
61.
go back to reference Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904), 304–308 (2002)CrossRef Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904), 304–308 (2002)CrossRef
62.
go back to reference Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell Jr, J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321(5885), 126–129 (2008)CrossRef Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell Jr, J.E.: Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321(5885), 126–129 (2008)CrossRef
63.
go back to reference Faller, D., Klingmuller, U., Timmer, J.: Simulation methods for optimal experimental design in systems biology. Simulation 79, 717–725 (2003)CrossRef Faller, D., Klingmuller, U., Timmer, J.: Simulation methods for optimal experimental design in systems biology. Simulation 79, 717–725 (2003)CrossRef
64.
go back to reference Zak, D.E., Gonye, G.E., Schwaber, J.S., Doyle III, F.J.: Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res. 13, 2396–2405 (2003)CrossRef Zak, D.E., Gonye, G.E., Schwaber, J.S., Doyle III, F.J.: Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res. 13, 2396–2405 (2003)CrossRef
65.
go back to reference Gadkar, K.G., Varner, J., Doyle III, F.J.: Model identification of signal transduction networks from data using a state regulator problem. IEEE Syst. Biol. 2, 17–30 (2005)CrossRef Gadkar, K.G., Varner, J., Doyle III, F.J.: Model identification of signal transduction networks from data using a state regulator problem. IEEE Syst. Biol. 2, 17–30 (2005)CrossRef
66.
go back to reference Geris, L., Gerisch, A., Maes, C., Van Oosterwyck, H., Carmeliet, G., Weiner, R., Vander Sloten, J.: Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med. Biol. Eng. Comput. 44(4), 280–289 (2006)CrossRef Geris, L., Gerisch, A., Maes, C., Van Oosterwyck, H., Carmeliet, G., Weiner, R., Vander Sloten, J.: Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med. Biol. Eng. Comput. 44(4), 280–289 (2006)CrossRef
67.
go back to reference Isaksson, H., van Donkelaar, C.C., Huiskes, R., Yao, J., Ito, K.: Determining the most important cellular characteristics for fracture healing using design of experiments methods. J. Theor. Biol. 255(1), 26–39 (2009)CrossRef Isaksson, H., van Donkelaar, C.C., Huiskes, R., Yao, J., Ito, K.: Determining the most important cellular characteristics for fracture healing using design of experiments methods. J. Theor. Biol. 255(1), 26–39 (2009)CrossRef
68.
go back to reference Cumming, G., Fidler, F., Vaux, D.L.: Error bars in experimental biology. J. Cell Biol. 177, 7–11 (2007)CrossRef Cumming, G., Fidler, F., Vaux, D.L.: Error bars in experimental biology. J. Cell Biol. 177, 7–11 (2007)CrossRef
69.
go back to reference Brown, K.S., Sethna, J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904 (2003)CrossRef Brown, K.S., Sethna, J.P.: Statistical mechanical approaches to models with many poorly known parameters. Phys. Rev. E 68, 021904 (2003)CrossRef
70.
go back to reference Brown, K.S., Hill, C.C., Calero, G.A., Myers, C.R., Lee, K.H., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1, 184–195 (2004)CrossRef Brown, K.S., Hill, C.C., Calero, G.A., Myers, C.R., Lee, K.H., et al.: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1, 184–195 (2004)CrossRef
71.
go back to reference Brodersen, R., Nielsen, F., Christiansen, J.C., Andersen, K.: Characterization of binding equilibrium data by a variety of fitted isotherms. Eur. J. Biochem. 169, 487–495 (1987)CrossRef Brodersen, R., Nielsen, F., Christiansen, J.C., Andersen, K.: Characterization of binding equilibrium data by a variety of fitted isotherms. Eur. J. Biochem. 169, 487–495 (1987)CrossRef
72.
go back to reference Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3(10), 1871–1878 (2007)MathSciNetCrossRef Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3(10), 1871–1878 (2007)MathSciNetCrossRef
73.
go back to reference Gutenkunst, R.N., Casey, F.P., Waterfall, J.J., Myers, C.R., Sethna, J.P.: Extracting falsifiable predictions from sloppy models. Ann. N. Y. Acad. Sci. 1115, 203–211 (2007)CrossRef Gutenkunst, R.N., Casey, F.P., Waterfall, J.J., Myers, C.R., Sethna, J.P.: Extracting falsifiable predictions from sloppy models. Ann. N. Y. Acad. Sci. 1115, 203–211 (2007)CrossRef
74.
go back to reference Ashbourn, J.M., Miller, J.J., Reumers, V., Baekelandt, V., Geris, L.: A mathematical model of adult subventricular neurogenesis. J. R. Soc. Interface (2012). doi:10.1098/rsif.2012.0193 Ashbourn, J.M., Miller, J.J., Reumers, V., Baekelandt, V., Geris, L.: A mathematical model of adult subventricular neurogenesis. J. R. Soc. Interface (2012). doi:10.​1098/​rsif.​2012.​0193
75.
go back to reference Daniels, B.C., Chen, Y.J., Sethna, J.P., Gutenkunst, R.N., Myers, C.R.: Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19(4), 389–395 (2008)CrossRef Daniels, B.C., Chen, Y.J., Sethna, J.P., Gutenkunst, R.N., Myers, C.R.: Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19(4), 389–395 (2008)CrossRef
76.
go back to reference Casey, F.P., Baird, D., Feng, Q., Gutenkunst, R.N., Waterfall, J.J., et al.: Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. IET Syst. Biol. 1, 190–202 (2007)CrossRef Casey, F.P., Baird, D., Feng, Q., Gutenkunst, R.N., Waterfall, J.J., et al.: Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model. IET Syst. Biol. 1, 190–202 (2007)CrossRef
Metadata
Title
In Vivo, In Vitro, In Silico: Computational Tools for Product and Process Design in Tissue Engineering
Author
Liesbet Geris
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_144