Skip to main content
Top
Published in: Shape Memory and Superelasticity 2/2015

01-06-2015

Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications

Authors: Marco Fabrizio Urbano, Andrea Cadelli, Frank Sczerzenie, Pietro Luccarelli, Stefano Beretta, Alberto Coda

Published in: Shape Memory and Superelasticity | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Current standards consider the size and distribution of inclusions in semi-finished material, but do not place requirements on final biomedical devices made of NiTi shape memory alloys. In this paper, we analyze this by comparing the fatigue performances of NiTi superelastic wires obtained by different processes through a simple bilinear model of fatigue response in terms of strain life. The fracture surfaces of failed wires are analyzed through SEM microscopy and data regarding the presence of particles, and their morphology is recorded and analyzed using Type-I extreme value distribution. The results show a strong correlation between the fatigue limit of wires (in terms of strain) and the predicted extreme values of inclusions at fracture origin. Then, following the concept of treating the inclusions as ‘small cracks,’ a simple relationship between fatigue limit strain range and inclusion size is proposed based on ΔKth data from the literature. The model is compared with the fatigue data obtained from the tested wires.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Melton N, Mercier O (1979) Fatigue of NiTi thermoelastic martensites. Acta Metall 27:137–144CrossRef Melton N, Mercier O (1979) Fatigue of NiTi thermoelastic martensites. Acta Metall 27:137–144CrossRef
2.
go back to reference Adler PH, Allen J, Lessar J, Francis R (2007) Martensite transformations and fatigue behavior of nitinol. J ASTM Int 4:3–16CrossRef Adler PH, Allen J, Lessar J, Francis R (2007) Martensite transformations and fatigue behavior of nitinol. J ASTM Int 4:3–16CrossRef
3.
go back to reference Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. JMEPEG 20:613–617CrossRef Pelton AR (2011) Nitinol fatigue: a review of microstructures and mechanisms. JMEPEG 20:613–617CrossRef
4.
go back to reference Reinoehl M, Bradley D, Bouthot R, Proft J (2000) The influence of melt practice on final fatigue properties of superelastic NiTi wires. In SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp 397–403 Reinoehl M, Bradley D, Bouthot R, Proft J (2000) The influence of melt practice on final fatigue properties of superelastic NiTi wires. In SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp 397–403
5.
go back to reference Sawaguchi T, Kaustrater G, Yawny A, Wagner M, Eggler G (2003) Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape memory wires in bending-rotation fatigue. Metall Mater Trans A 34A:2847–2860CrossRef Sawaguchi T, Kaustrater G, Yawny A, Wagner M, Eggler G (2003) Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape memory wires in bending-rotation fatigue. Metall Mater Trans A 34A:2847–2860CrossRef
6.
go back to reference Wong S, Lin ZC, Tahran A, Boylan J, Pike K, Kramer-Brown P (2009) An investigation of factors impacting nitinol wire fatigue life. J ASTM Int 6:99–107CrossRef Wong S, Lin ZC, Tahran A, Boylan J, Pike K, Kramer-Brown P (2009) An investigation of factors impacting nitinol wire fatigue life. J ASTM Int 6:99–107CrossRef
7.
go back to reference Schaffer JE, Plumley DL (2009) Fatigue performance of nitinol round wire with varying cold work reductions. J Mater Eng Perform 18:563–569CrossRef Schaffer JE, Plumley DL (2009) Fatigue performance of nitinol round wire with varying cold work reductions. J Mater Eng Perform 18:563–569CrossRef
8.
go back to reference Rahim M et al (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef Rahim M et al (2013) Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater 61(10):3667–3686CrossRef
9.
go back to reference Steegmuller R et al (2014) Analysis of new nitinol ingot qualities. J Mater Eng Perform 23:2450–2456CrossRef Steegmuller R et al (2014) Analysis of new nitinol ingot qualities. J Mater Eng Perform 23:2450–2456CrossRef
10.
go back to reference Launey M et al (2014) Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic nitinol. J Mech Behav Biomed Mater 34:181–186CrossRef Launey M et al (2014) Influence of microstructural purity on the bending fatigue behavior of VAR-melted superelastic nitinol. J Mech Behav Biomed Mater 34:181–186CrossRef
11.
go back to reference Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants, ASTM F2063-12, 2012 Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants, ASTM F2063-12, 2012
12.
go back to reference Standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features, ASTM E2283-08, 2014 Standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features, ASTM E2283-08, 2014
13.
go back to reference Murakami Y (2002) Metal fatigue: effect of small defects and nonmetallic inclusions. Elsevier, Oxford Murakami Y (2002) Metal fatigue: effect of small defects and nonmetallic inclusions. Elsevier, Oxford
14.
go back to reference Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis, ASTM F2004-05, 2010 Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis, ASTM F2004-05, 2010
15.
go back to reference Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery, ASTM 2082-03, 2003 Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery, ASTM 2082-03, 2003
16.
go back to reference Standard test method for tension testing of nickel-titanium superelastic materials, ASTM F2516-14, 2014 Standard test method for tension testing of nickel-titanium superelastic materials, ASTM F2516-14, 2014
17.
go back to reference Sczerzenie F, Vergani G, Belden C (2012) The measurement of total inclusion content in nickel-titanium alloys. J Mater Eng Perform 21:2578–2586CrossRef Sczerzenie F, Vergani G, Belden C (2012) The measurement of total inclusion content in nickel-titanium alloys. J Mater Eng Perform 21:2578–2586CrossRef
18.
go back to reference Spindel JE, Haibach E (1979) The method of maximum likelihood applied to the statistical analysis of fatigue data. Int J Fatigue 1:81–88CrossRef Spindel JE, Haibach E (1979) The method of maximum likelihood applied to the statistical analysis of fatigue data. Int J Fatigue 1:81–88CrossRef
19.
go back to reference Standard practice for statistical Analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data, ASTM E739-10, 2010 Standard practice for statistical Analysis of linear or linearized stress-life (S-N) and strain-life (ε-N) fatigue data, ASTM E739-10, 2010
21.
go back to reference Murakami Y, Endo M (1994) Effect of defects, inclusions, and inhomogeneities on fatigue strength. Int J Fatigue 16:163–182CrossRef Murakami Y, Endo M (1994) Effect of defects, inclusions, and inhomogeneities on fatigue strength. Int J Fatigue 16:163–182CrossRef
22.
go back to reference Murakami Y, Toryiama T, Coudert EM (1994) Instructions for a new method of inclusion rating and correlation with the fatigue limit. J Test Eval 22:318–326CrossRef Murakami Y, Toryiama T, Coudert EM (1994) Instructions for a new method of inclusion rating and correlation with the fatigue limit. J Test Eval 22:318–326CrossRef
23.
go back to reference Murakami Y, Beretta S (1999) Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes 2:123–147CrossRef Murakami Y, Beretta S (1999) Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes 2:123–147CrossRef
24.
go back to reference Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRef Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonCrossRef
25.
go back to reference Beretta S, Murakami Y (1998) Statistical analysis of defect for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct 21:1049–1065CrossRef Beretta S, Murakami Y (1998) Statistical analysis of defect for fatigue strength prediction and quality control of materials. Fatigue Fract Eng Mater Struct 21:1049–1065CrossRef
26.
go back to reference Murakami Y, Endo M (1986) Effect of hardness and crack geometries on ΔKth of small cracks emanating from small defects, In: The Behavior of Short Fatigue Cracks, EGF Pub. 1, pp 275–293 Murakami Y, Endo M (1986) Effect of hardness and crack geometries on ΔKth of small cracks emanating from small defects, In: The Behavior of Short Fatigue Cracks, EGF Pub. 1, pp 275–293
27.
go back to reference Robertson SW, Ritchie RO (2007) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J Biomed Mater Res—Part B 84:26–33 Robertson SW, Ritchie RO (2007) A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic nitinol tube. J Biomed Mater Res—Part B 84:26–33
28.
go back to reference El-Haddad MH, Smith KN, Topper TH (1979) Fatigue crack propagation of short cracks. J Eng Mater Tech 101:42–46CrossRef El-Haddad MH, Smith KN, Topper TH (1979) Fatigue crack propagation of short cracks. J Eng Mater Tech 101:42–46CrossRef
29.
go back to reference Beretta S, Ghidini A, Lombardo F (2005) Fracture mechanics and scale effects in the fatigue of railway axles. Eng Fract Mech 72:195–208CrossRef Beretta S, Ghidini A, Lombardo F (2005) Fracture mechanics and scale effects in the fatigue of railway axles. Eng Fract Mech 72:195–208CrossRef
30.
go back to reference Robertson SW, Stanliewicz J, Gong XY, Ritchie RO (2006) In Mertmann M (ed) SMST 2003: Proceedings of the International Conference on shape memory and superelastic technologies, Baden-Baden, Germany, ASM Intl., Materials Park, OH, 2006, pp 79–88 Robertson SW, Stanliewicz J, Gong XY, Ritchie RO (2006) In Mertmann M (ed) SMST 2003: Proceedings of the International Conference on shape memory and superelastic technologies, Baden-Baden, Germany, ASM Intl., Materials Park, OH, 2006, pp 79–88
31.
go back to reference Schijve J (2001) Fatigue of structures and materials. Kluwer Academic Publishers, Dordrecht Schijve J (2001) Fatigue of structures and materials. Kluwer Academic Publishers, Dordrecht
32.
go back to reference Fatigue crack growth computer program NASGRO version 3.0—Reference Manual. Rapp. Tech. JSC-22267, NASA, 2001 Fatigue crack growth computer program NASGRO version 3.0—Reference Manual. Rapp. Tech. JSC-22267, NASA, 2001
33.
go back to reference Carpinteri A (1994) Propagation of surface cracks under cyclic loading. Handbook of fatigue crack propagation in metallic structures. Elsevier, Amsterdam, pp 653–705 Carpinteri A (1994) Propagation of surface cracks under cyclic loading. Handbook of fatigue crack propagation in metallic structures. Elsevier, Amsterdam, pp 653–705
Metadata
Title
Inclusions Size-based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications
Authors
Marco Fabrizio Urbano
Andrea Cadelli
Frank Sczerzenie
Pietro Luccarelli
Stefano Beretta
Alberto Coda
Publication date
01-06-2015
Publisher
Springer International Publishing
Published in
Shape Memory and Superelasticity / Issue 2/2015
Print ISSN: 2199-384X
Electronic ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-015-0016-1

Other articles of this Issue 2/2015

Shape Memory and Superelasticity 2/2015 Go to the issue

Premium Partners