Skip to main content
Top

10-09-2024 | Research

Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction

Authors: Yandan Zheng, Luu Anh Tuan

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

From an unstructured text, relation extraction (RE) predicts semantic relationships between pairs of entities. The process of labeling tokens and phrases can be very expensive and require a great deal of time and effort. The low-resource relation extraction (LRE) problem comes into being and is challenging since there are only a limited number of annotated sentences available. Recent research has focused on minimizing the cross-entropy loss between pseudo labels and ground truth or on using external knowledge to make annotations for unlabeled data. Existing methods, however, fail to take into account the semantics of relation types and the information hidden within different relation groups. By drawing inspiration from the process of human interpretation of unstructured documents, we introduce a Template-based Contrastive Learning ( TempCL ). Through the use of template, we limit the model’s attention to the semantic information that is contained in a relation. Then, we employ a contrastive learning strategy using both group-wise and instance-wise perspectives to leverage shared semantic information within the same relation type to achieve a more coherent semantic representation. Particularly, the proposed group-wise contrastive learning minimizes the discrepancy between the template and original sentences in the same label group and maximizes the difference between those from separate label groups under limited annotation settings. Our experiment results on two public datasets show that our model TempCL achieves state-of-the-art results for low-resource relation extraction in comparison to baselines. The relative error reductions range from 0.68 to 1.32%. Our model encourages the feature to be aligned with both the original and template sentences. Using two contrastive losses, we exploit shared semantic information underlying sentences (both original and template) that have the same relation type. We demonstrate that our method reduces the noise caused by tokens that are unrelated and constrains the model’s attention to the tokens that are related.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Chen M, Herrera F, Hwang K. Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access. 2018;6:19774–83.CrossRef Chen M, Herrera F, Hwang K. Cognitive computing: Architecture, technologies and intelligent applications. IEEE Access. 2018;6:19774–83.CrossRef
2.
go back to reference Wu T, Li X, Li YF, Haffari G, Qi G, Zhu Y, Xu G. Curriculum-meta learning for order-robust continual relation extraction. 2021. arXiv:2101.01926 Wu T, Li X, Li YF, Haffari G, Qi G, Zhu Y, Xu G. Curriculum-meta learning for order-robust continual relation extraction. 2021. arXiv:​2101.​01926
3.
go back to reference Zeng W, Lin Y, Liu Z, Sun M. Incorporating relation paths in neural relation extraction. In EMNLP. 2017. p 1768–77. Zeng W, Lin Y, Liu Z, Sun M. Incorporating relation paths in neural relation extraction. In EMNLP. 2017. p 1768–77.
4.
go back to reference Zhang Y, Zhong V, Chen D, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In EMNLP. 2017. p 35–45. Zhang Y, Zhong V, Chen D, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In EMNLP. 2017. p 35–45.
5.
go back to reference Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In ACL. 2009. p 1003–11. Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In ACL. 2009. p 1003–11.
6.
go back to reference Zeng D, Liu K, Chen Y, Zhao J. Distant supervision for relation extraction via piecewise convolutional neural networks. In EMNLP. 2015. p 1753–62. Zeng D, Liu K, Chen Y, Zhao J. Distant supervision for relation extraction via piecewise convolutional neural networks. In EMNLP. 2015. p 1753–62.
7.
go back to reference Hu X, Zhang C, Ma F, Liu C, Wen L, Yu PS. Semi-supervised relation extraction via incremental meta self-training. In EMNLP (Findings). 2021. p 487–96. Association for Computational Linguistics. Hu X, Zhang C, Ma F, Liu C, Wen L, Yu PS. Semi-supervised relation extraction via incremental meta self-training. In EMNLP (Findings). 2021. p 487–96. Association for Computational Linguistics.
8.
go back to reference Hu X, Zhang C, Yang Y, Li X, Lin L, Wen L, Yu PS. Gradient imitation reinforcement learning for low resource relation extraction. In EMNLP. 2021. p 2737–46. Association for Computational Linguistics. Hu X, Zhang C, Yang Y, Li X, Lin L, Wen L, Yu PS. Gradient imitation reinforcement learning for low resource relation extraction. In EMNLP. 2021. p 2737–46. Association for Computational Linguistics.
9.
go back to reference Peng H, Gao T, Han X, Lin Y, Li P, Liu Z, Sun M, Zhou J. Learning from context or names? an empirical study on neural relation extraction. In EMNLP. 2020. p 3661–72. Association for Computational Linguistics. Peng H, Gao T, Han X, Lin Y, Li P, Liu Z, Sun M, Zhou J. Learning from context or names? an empirical study on neural relation extraction. In EMNLP. 2020. p 3661–72. Association for Computational Linguistics.
10.
go back to reference Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. A survey on contrastive self-supervised learning. Technologies. 2021;9(1). Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F. A survey on contrastive self-supervised learning. Technologies. 2021;9(1).
11.
go back to reference Qin Y, Lin Y, Takanobu R, Liu Z, Li P, Ji H, Huang M, Sun M, Zhou J. ERICA: improving entity and relation understanding for pre-trained language models via contrastive learning. In ACL/IJCNLP. 2021. p 3350–63. Association for Computational Linguistics. Qin Y, Lin Y, Takanobu R, Liu Z, Li P, Ji H, Huang M, Sun M, Zhou J. ERICA: improving entity and relation understanding for pre-trained language models via contrastive learning. In ACL/IJCNLP. 2021. p 3350–63. Association for Computational Linguistics.
12.
go back to reference Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: SemEval. 2010. p 33–38. Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DO, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: SemEval. 2010. p 33–38.
13.
go back to reference Rosenberg C, Hebert M, Schneiderman H. Semi-supervised self-training of object detection models. In WACV/MOTION. 2005. p 29–36. IEEE Computer Society. Rosenberg C, Hebert M, Schneiderman H. Semi-supervised self-training of object detection models. In WACV/MOTION. 2005. p 29–36. IEEE Computer Society.
14.
go back to reference Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS. 2017. p 1195–204. Tarvainen A, Valpola H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In NIPS. 2017. p 1195–204.
15.
go back to reference Lin H, Yan J, Qu M, Ren X. Learning dual retrieval module for semi-supervised relation extraction. In WWW. 2019. p 1073–83. ACM. Lin H, Yan J, Qu M, Ren X. Learning dual retrieval module for semi-supervised relation extraction. In WWW. 2019. p 1073–83. ACM.
17.
go back to reference Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Cohen. Learning latent forests for medical relation extraction. In: Bessiere C, editor, IJCAI. 2020. p 3651–57. Zhijiang Guo, Guoshun Nan, Wei Lu, and Shay B. Cohen. Learning latent forests for medical relation extraction. In: Bessiere C, editor, IJCAI. 2020. p 3651–57.
18.
go back to reference Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky D, Chai J, Schluter N, Tetreault JR, editors, ACL. 2020. p 1546–57. Nan G, Guo Z, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. In: Jurafsky D, Chai J, Schluter N, Tetreault JR, editors, ACL. 2020. p 1546–57.
19.
go back to reference Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W. Consert: A contrastive framework for self-supervised sentence representation transfer. In: ACL. 2021. p 5065–75. Association for Computational Linguistics. Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W. Consert: A contrastive framework for self-supervised sentence representation transfer. In: ACL. 2021. p 5065–75. Association for Computational Linguistics.
20.
go back to reference Gao T, Yao X, Chen D. Simcse: Simple contrastive learning of sentence embeddings. In: EMNLP, 2021. p 6894–10. Association for Computational Linguistics. Gao T, Yao X, Chen D. Simcse: Simple contrastive learning of sentence embeddings. In: EMNLP, 2021. p 6894–10. Association for Computational Linguistics.
21.
go back to reference Giorgi JM, Nitski O, Wang B, Bader GD. Declutr: Deep contrastive learning for unsupervised textual representations. In: ACL. 2021. p 879–5. Association for Computational Linguistics. Giorgi JM, Nitski O, Wang B, Bader GD. Declutr: Deep contrastive learning for unsupervised textual representations. In: ACL. 2021. p 879–5. Association for Computational Linguistics.
22.
go back to reference Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. Self-guided contrastive learning for BERT sentence representations. In ACL. 2021. p 2528–40. Association for Computational Linguistics. Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. Self-guided contrastive learning for BERT sentence representations. In ACL. 2021. p 2528–40. Association for Computational Linguistics.
23.
go back to reference Soares LB, FitzGerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: ACL. 2019. p 2895–905. Soares LB, FitzGerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: ACL. 2019. p 2895–905.
24.
go back to reference Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT. 2019. p 4171–86. Association for Computational Linguistics. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT. 2019. p 4171–86. Association for Computational Linguistics.
25.
go back to reference Movshovitz-Attias Y, Toshev A, Leung TK, Ioffe S, Singh S. No fuss distance metric learning using proxies. In: ICCV. 2017. p 360–8. IEEE Computer Society. Movshovitz-Attias Y, Toshev A, Leung TK, Ioffe S, Singh S. No fuss distance metric learning using proxies. In: ICCV. 2017. p 360–8. IEEE Computer Society.
26.
go back to reference Laine S, Aila T. Temporal ensembling for semi-supervised learning. In: ICLR. 2017. OpenReview.net. Laine S, Aila T. Temporal ensembling for semi-supervised learning. In: ICLR. 2017. OpenReview.net.
27.
go back to reference Hu X, Chen J, Meng S, Wen L, Yu PS. Selflre: Self-refining representation learning for low-resource relation extraction. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, 2023. p 2364–68, New York, NY, USA. Association for Computing Machinery. Hu X, Chen J, Meng S, Wen L, Yu PS. Selflre: Self-refining representation learning for low-resource relation extraction. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’23, 2023. p 2364–68, New York, NY, USA. Association for Computing Machinery.
28.
go back to reference Mao B, Jia C, Huang Y, He K, Wu J, Gong T, Li C. Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2022. p 2318–25. Mao B, Jia C, Huang Y, He K, Wu J, Gong T, Li C. Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2022. p 2318–25.
Metadata
Title
Incorporating Template-Based Contrastive Learning into Cognitively Inspired, Low-Resource Relation Extraction
Authors
Yandan Zheng
Luu Anh Tuan
Publication date
10-09-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10343-8

Premium Partner