Skip to main content
Top
Published in: The International Journal of Life Cycle Assessment 9/2020

27-07-2020 | LCA FOR MANUFACTURING AND NANOTECHNOLOGY

Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications

Authors: Eylem Asmatulu, Balakrishnan Subeshan, Janet Twomey, Michael Overcash

Published in: The International Journal of Life Cycle Assessment | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Typically, the high energy required to manufacture nanomaterials is weighed against the benefits transferred to a product. Adequately establishing the environmental characteristics of a product that contains nanomaterials requires a complete methodology. The objectives of this study are to draw attentions on life cycle information and to demonstrate the methodology for the scientific assessment of the environmental benefits of using a nanomaterial in a product to extend the product life and to provide a real example for the calculations of the approach.

Methods

About 1317 products with nanomaterials in the market were analyzed to identify the outcomes of lifetime extension by the nanomaterial additions. Five life cycle elements were quantified to establish the cradle-to-gate (CTG) life cycle footprint of a product comprised of a nanomaterial. These are the following: the life cycle of the conventional product with the usual construction and without added nanomaterial, the life cycle of the nanomaterial manufactured from CTG per kilogram of nanomaterial, the amount of nanomaterial incorporated into the product, the quantitative improvement in the product performance due to the presence of the nanomaterial (such as increased lifespan), and the incremental energy and auxiliary materials (often negligible) involved in the incorporation of the nanomaterial into the conventional product

Results and discussion

The primary challenge here is to have all five of the informational pieces in order to ensure that the environmental footprint of using a nanomaterial is complete. The results can be seen for the range of products with life extension via nanomaterials, ranging from 130 to 3100%. In these cases, the higher energy to manufacture the nanomaterial is more than offset by the avoidance of manufacturing non-nanoproducts multiple times over the life extension period.

Conclusions

It was found that several nanoscale inclusions in the products greatly increased many properties of the final product along with the lifetime. Increasing the lifetime of products by adding nanoscale inclusions will thus reduce environmental and health concerns, as well as the use of virgin materials, energy consumption, landfill allocations in the long term, and product marketability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ashby MF, Miller A, Rutter F, Seymour C, Wegst UGK (2012) CES EduPack for eco design—a white paper. Granta Teaching Resources 5 Ashby MF, Miller A, Rutter F, Seymour C, Wegst UGK (2012) CES EduPack for eco design—a white paper. Granta Teaching Resources 5
go back to reference Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14(3):720CrossRef Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14(3):720CrossRef
go back to reference BéruBé K, Prytherch Z, Job C, Hughes T (2010) Human primary bronchial lung cell constructs: the new respiratory models. Toxicol. 278(3):311–318CrossRef BéruBé K, Prytherch Z, Job C, Hughes T (2010) Human primary bronchial lung cell constructs: the new respiratory models. Toxicol. 278(3):311–318CrossRef
go back to reference Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60(9):43–48CrossRef Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60(9):43–48CrossRef
go back to reference Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17(3):295–303CrossRef Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17(3):295–303CrossRef
go back to reference Gaines L, Sullivan J, Burnham A (2011) Life-cycle analysis for lithium-ion battery production and recycling. Paper No. 11-3891. TRB 90th Annual Meeting, Washington, DC Gaines L, Sullivan J, Burnham A (2011) Life-cycle analysis for lithium-ion battery production and recycling. Paper No. 11-3891. TRB 90th Annual Meeting, Washington, DC
go back to reference Hattori Y, Mukasa S, Toyota H, Inoue T, Nomura S (2011) Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid. Mater Lett 65(2):188–190CrossRef Hattori Y, Mukasa S, Toyota H, Inoue T, Nomura S (2011) Synthesis of zinc and zinc oxide nanoparticles from zinc electrode using plasma in liquid. Mater Lett 65(2):188–190CrossRef
go back to reference Hicks A, Theis T (2017) A comparative life cycle assessment of commercially available household silver-enabled polyester textiles. Int J Life Cycle Assess 22(2):256–265CrossRef Hicks A, Theis T (2017) A comparative life cycle assessment of commercially available household silver-enabled polyester textiles. Int J Life Cycle Assess 22(2):256–265CrossRef
go back to reference Ishihara K, Nishimura K, Uchiyama Y (1999) Life cycle analysis of electric vehicles with advanced battery in Japan. Proceedings of the EVS-16, p. 7, Beijing, China Ishihara K, Nishimura K, Uchiyama Y (1999) Life cycle analysis of electric vehicles with advanced battery in Japan. Proceedings of the EVS-16, p. 7, Beijing, China
go back to reference Ishihara K, Kihira N, Terada N, Iwahori T (2002) Environmental burdens of large lithium-ion batteries developed in a Japanese national project. CRIEPI Japan Ishihara K, Kihira N, Terada N, Iwahori T (2002) Environmental burdens of large lithium-ion batteries developed in a Japanese national project. CRIEPI Japan
go back to reference Khan WS, Ceylan M, Asmatulu E, Asmatulu R (2012) Effects of nanotechnology on global warming. In ASEE Midwest Section Conference, Rollo, MO (Vol. 19, p. 21) Khan WS, Ceylan M, Asmatulu E, Asmatulu R (2012) Effects of nanotechnology on global warming. In ASEE Midwest Section Conference, Rollo, MO (Vol. 19, p. 21)
go back to reference Kück A, Steinfeldt M, Prenzel K, Swiderek P, Gleich AV, Thöming J (2011) Green nanoparticle production using micro reactor technology. J Phys Conf Ser 304(1):012074 IOP PublishingCrossRef Kück A, Steinfeldt M, Prenzel K, Swiderek P, Gleich AV, Thöming J (2011) Green nanoparticle production using micro reactor technology. J Phys Conf Ser 304(1):012074 IOP PublishingCrossRef
go back to reference Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15(8–9):838–848CrossRef Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15(8–9):838–848CrossRef
go back to reference Osterwalder N, Capello C, Hungerbühler K, Stark WJ (2006) Energy consumption during nanoparticle production: how economic is dry synthesis. J Nanopart Res 8(1):1–9CrossRef Osterwalder N, Capello C, Hungerbühler K, Stark WJ (2006) Energy consumption during nanoparticle production: how economic is dry synthesis. J Nanopart Res 8(1):1–9CrossRef
go back to reference Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15(3):212–226CrossRef Roes AL, Marsili E, Nieuwlaar E, Patel MK (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15(3):212–226CrossRef
go back to reference Saner D, Walser T, Vadenbo CO (2012) End-of-life and waste management in life cycle assessment—Zurich, 6 December 2011. Int J Life Cycle Assess 17(4):504–510CrossRef Saner D, Walser T, Vadenbo CO (2012) End-of-life and waste management in life cycle assessment—Zurich, 6 December 2011. Int J Life Cycle Assess 17(4):504–510CrossRef
go back to reference Steinberger JK, Friot D, Jolliet O, Erkman S (2009) A spatially explicit life cycle inventory of the global textile chain. Int J Life Cycle Assess 14(5):443–455CrossRef Steinberger JK, Friot D, Jolliet O, Erkman S (2009) A spatially explicit life cycle inventory of the global textile chain. Int J Life Cycle Assess 14(5):443–455CrossRef
go back to reference Subramanian V, Semenzin E, Zabeo A, Saling P, Ligthart T, van Harmelen T, Malsch I, Hristozov D, Marcomini A (2018) Assessing the social impacts of nano-enabled products through the life cycle: the case of nano-enabled biocidal paint. Int J Life Cycle Assess 23(2):348–356CrossRef Subramanian V, Semenzin E, Zabeo A, Saling P, Ligthart T, van Harmelen T, Malsch I, Hristozov D, Marcomini A (2018) Assessing the social impacts of nano-enabled products through the life cycle: the case of nano-enabled biocidal paint. Int J Life Cycle Assess 23(2):348–356CrossRef
go back to reference Wallner E, Sarma DHR, Myers B, Shah S, Ihms D, Chengalva S, Dykstra C (2010) Nanotechnology applications in future automobiles (No. 2010-01-1149). SAE Tech. Paper Wallner E, Sarma DHR, Myers B, Shah S, Ihms D, Chengalva S, Dykstra C (2010) Nanotechnology applications in future automobiles (No. 2010-01-1149). SAE Tech. Paper
Metadata
Title
Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications
Authors
Eylem Asmatulu
Balakrishnan Subeshan
Janet Twomey
Michael Overcash
Publication date
27-07-2020
Publisher
Springer Berlin Heidelberg
Published in
The International Journal of Life Cycle Assessment / Issue 9/2020
Print ISSN: 0948-3349
Electronic ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-020-01794-w

Other articles of this Issue 9/2020

The International Journal of Life Cycle Assessment 9/2020 Go to the issue