Skip to main content
Top

2024 | OriginalPaper | Chapter

9. Incremental Control to Reduce Model Dependency of Classical Nonlinear Control

Authors : Byoung-Ju Jeon, Hyo-Sang Shin, Antonios Tsourdos

Published in: Control of Autonomous Aerial Vehicles

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Incremental control was proposed to reduce the model dependency of classical nonlinear control algorithms. Despite classical nonlinear controllers such as backstepping (BKS) controllers, incremental control systems, such as incremental backstepping (IBKS) controllers, utilize state derivatives and control input measurements instead of model information. In this chapter, we present the design of an incremental controller, and its closed-loop characteristics are provided. Remarkably, in the absence of uncertainties in the model and the measurements, the closed-loop transfer functions with IBKS and BKS are shown to be the same. To display the features of this controller, IBKS is applied to design the controller for a 6-degrees-of-freedom (DoF) unmanned aerial vehicle (UAV). Then, its performance is compared to that of a BKS controller to show that the model dependency is reduced by utilizing the state derivative and control input measurements. A closed-loop analysis with IBKS is conducted for three different cases. In the first test case, which involves model uncertainties and ideal measurements, unlike BKS, the closed-loop stability and performance of IBKS are not affected if the control system is fast enough. In the second test case, wherein both model uncertainties and measurements are biased, a steady-state error is experienced, but the system’s stability is unaltered. In the third test case, which involves model uncertainties and measurement delays, the closed-loop system’s stability is guaranteed by IBKS only if the delays on the state derivatives and the control input measurements satisfy a certain relationship which is dependent on the model uncertainty in the control effectiveness information.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Slotine J-JE, Li W et al (1991) Applied nonlinear control, vol 199, no 1. Englewood Cliffs, NJ, Prentice Hall Slotine J-JE, Li W et al (1991) Applied nonlinear control, vol 199, no 1. Englewood Cliffs, NJ, Prentice Hall
4.
go back to reference Acquatella P, van Kampen E-J, Chu QP (2013) Incremental backstepping for robust nonlinear flight control. Proc EuroGNC 2013:1444–1463 Acquatella P, van Kampen E-J, Chu QP (2013) Incremental backstepping for robust nonlinear flight control. Proc EuroGNC 2013:1444–1463
5.
go back to reference Sieberling S, Chu Q, Mulder J (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guidance Control Dyn 33(6):1732–1742 CrossRef Sieberling S, Chu Q, Mulder J (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guidance Control Dyn 33(6):1732–1742 CrossRef
6.
go back to reference Wang X, Van Kampen E-J, Chu Q, Lu P (2019) Stability analysis for incremental nonlinear dynamic inversion control. J Guidance Control Dyn 42(5):1116–1129 CrossRef Wang X, Van Kampen E-J, Chu Q, Lu P (2019) Stability analysis for incremental nonlinear dynamic inversion control. J Guidance Control Dyn 42(5):1116–1129 CrossRef
7.
go back to reference Grondman F, Looye G, Kuchar RO, Chu QP, Van Kampen E-J (2018) Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft. In: Guidance, navigation, and control conference, pp 1–25 Grondman F, Looye G, Kuchar RO, Chu QP, Van Kampen E-J (2018) Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft. In: Guidance, navigation, and control conference, pp 1–25
8.
go back to reference Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2021) Understandings of incremental backstepping controller considering measurement delay with model uncertainty. Aerosp Sci Technol 109:106408 Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2021) Understandings of incremental backstepping controller considering measurement delay with model uncertainty. Aerosp Sci Technol 109:106408
9.
go back to reference Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2019) Closed-loop analysis with incremental backstepping controller considering measurement bias. IFAC-PapersOnLine 52(12):405–410 CrossRef Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2019) Closed-loop analysis with incremental backstepping controller considering measurement bias. IFAC-PapersOnLine 52(12):405–410 CrossRef
10.
go back to reference Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2021) Understandings of incremental backstepping controller considering measurement delay with model uncertainty. Aerosp Sci Technol 109:106408 Jeon B-J, Seo M-G, Shin H-S, Tsourdos A (2021) Understandings of incremental backstepping controller considering measurement delay with model uncertainty. Aerosp Sci Technol 109:106408
11.
go back to reference Lee T, Kim Y (2001) Nonlinear adaptive flight control using backstepping and neural networks controller. J Guidance Control Dyn 24(4):675–682 CrossRef Lee T, Kim Y (2001) Nonlinear adaptive flight control using backstepping and neural networks controller. J Guidance Control Dyn 24(4):675–682 CrossRef
12.
go back to reference van Gils P, Van Kampen E-J, de Visser CC, Chu QP (2016) Adaptive incremental backstepping flight control for a high-performance aircraft with uncertainties. In: Guidance, navigation, and control conference, pp 1–26 van Gils P, Van Kampen E-J, de Visser CC, Chu QP (2016) Adaptive incremental backstepping flight control for a high-performance aircraft with uncertainties. In: Guidance, navigation, and control conference, pp 1–26
13.
go back to reference McLean D (1990) Automatic flight control systems. Prentice Hall, New York McLean D (1990) Automatic flight control systems. Prentice Hall, New York
14.
go back to reference Lee C-H, Jun B-E, Lee J-I (2016) Connections between linear and nonlinear missile autopilots via three-loop topology. J Guidance Control Dyn 39(6):1426–1432 MathSciNetCrossRef Lee C-H, Jun B-E, Lee J-I (2016) Connections between linear and nonlinear missile autopilots via three-loop topology. J Guidance Control Dyn 39(6):1426–1432 MathSciNetCrossRef
15.
go back to reference Driver R, Sasser D, Slater M (1973) The equation x’(t) \(=\) ax (t) \(+\) bx (t \(- \tau \)) with “small’’ delay. Am Math Mon 80(9):990–995 MathSciNetMATH Driver R, Sasser D, Slater M (1973) The equation x’(t) \(=\) ax (t) \(+\) bx (t \(- \tau \)) with “small’’ delay. Am Math Mon 80(9):990–995 MathSciNetMATH
16.
go back to reference Guillouzic S, L’Heureux I, Longtin A (1999) Small delay approximation of stochastic delay differential equations. Phys Rev E 59(4):3970 CrossRefMATH Guillouzic S, L’Heureux I, Longtin A (1999) Small delay approximation of stochastic delay differential equations. Phys Rev E 59(4):3970 CrossRefMATH
17.
go back to reference Bahill A (1983) A simple adaptive smith-predictor for controlling time-delay systems: a tutorial. IEEE Control Syst Mag 3(2):16–22 CrossRef Bahill A (1983) A simple adaptive smith-predictor for controlling time-delay systems: a tutorial. IEEE Control Syst Mag 3(2):16–22 CrossRef
18.
go back to reference Insperger T (2015) On the approximation of delayed systems by Taylor series expansion. J Comput Nonlinear Dyn 10(2):024503 Insperger T (2015) On the approximation of delayed systems by Taylor series expansion. J Comput Nonlinear Dyn 10(2):024503
19.
go back to reference Powell MJ (1968) A Fortran subroutine for solving systems of nonlinear algebraic equations. Tech. Rep, Atomic Energy Research Establishment, Harwell, England (United Kingdom) Powell MJ (1968) A Fortran subroutine for solving systems of nonlinear algebraic equations. Tech. Rep, Atomic Energy Research Establishment, Harwell, England (United Kingdom)
Metadata
Title
Incremental Control to Reduce Model Dependency of Classical Nonlinear Control
Authors
Byoung-Ju Jeon
Hyo-Sang Shin
Antonios Tsourdos
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-39767-7_9

Premium Partner