Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-04-2016 | Original Article | Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017

Incremental enhanced α-expansion move for large data: a probability regularization perspective

Journal:
International Journal of Machine Learning and Cybernetics > Issue 5/2017
Authors:
Anqi Bi, Shitong Wang

Abstract

To deal with large data clustering tasks, an incremental version of exemplar-based clustering algorithm is proposed in this paper. The novel clustering algorithm, called Incremental Enhanced α-Expansion Move (IEEM), processes large data chunk by chunk. The work here includes two aspects. First, in terms of the maximum a posteriori principle, a unified target function is developed to unify two typical exemplar-based clustering algorithms, namely Affinity Propagation (AP) and Enhanced α-Expansion Move (EEM). Secondly, with the proposed target function, the probability based regularization term is proposed and accordingly the proposed target function is extended to make IEEM have the ability to improve clustering performance of the entire dataset by leveraging the clustering result of previous chunks. Another outstanding characteristic of IEEM is that only by modifying the definitions of several variables used in EEM, the minimization procedure of EEM and its theoretical spirit can be easily kept in IEEM, and hence no more efforts are needed to develop a new optimization algorithm for IEEM. In contrast to AP, EEM and the existing incremental clustering algorithm IMMFC, our experimental results of synthetic and real-world datasets indicate the effectiveness of IEEM.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017 Go to the issue