Skip to main content
Top
Published in: The VLDB Journal 6/2020

03-08-2020 | Regular Paper

Incremental preference adjustment: a graph-theoretical approach

Authors: Liangjun Song, Junhao Gan, Zhifeng Bao, Boyu Ruan, H. V. Jagadish, Timos Sellis

Published in: The VLDB Journal | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Learning users’ preferences is critical to personalized search and recommendation. Most such systems depend on lists of items rank-ordered according to the user’s preference. Ideally, we want the system to adjust its estimate of users’ preferences after every interaction, thereby becoming progressively better at giving the user what she wants. We also want these adjustments to be gradual and explainable, so that the user is not surprised by wild swings in system rank ordering. In this paper, we support a \(\textit{rank-reversal}\) operation on two items \(\text{ x }\) and \(\text{ y }\) for users: adjust the user’s preference such that the personalized rank of \(\text{ x }\) and \(\text{ y }\) is reversed. We emphasize that this problem is orthogonal to the preference learning and its solutions can run on top of the learning outcome of any vector-embedding-based preference learning model. Therefore, our preference adjustment techniques enable all those existing offline preference learning models to incrementally and interactively improve their response to (indirectly specified) user preferences. Specifically, we define the Minimum Dimension Adjustment (MDA) problem, where the preference adjustments are under certain constraints imposed by a specific graph and the goal is to adjust a user’s preference by reversing the personalized rank of two given items while minimizing the number of dimensions with value changed in the preference vector. We first prove that MDA is NP-hard, and then show that a 2.17-approximate solution can be obtained in polynomial time provided that an optimal solution to a carefully designed problem is given. Finally, we propose two efficient heuristic algorithms, where the first heuristic algorithm can achieve an approximation guarantee, and the second is provably efficient. Experiments on five publicly available datasets show that our solutions can adjust users’ preferences effectively and efficiently.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
http://civilcomputing.com/HomeSeeker
 
2
As mentioned earlier in Remark 2 in the previous subsection, in our application, only the edges adjacent to either s or t in \(\mathcal {G}\) have nonzero costs. Therefore, it is sufficient to set \(\pi _s = \pi _t = \min _{i = s \vee j=t}|\alpha _{i,j}|\) and \(\pi _i = 0\) for all i other than s and t. It can be verified that \(\pi \) is always valid for any valid flow in \(\mathcal {G}\), and hence, there is no need to update it at the end of each iteration in the While-Loop of Algorithm 3. As a result, it suffices to stop the Dijkstra algorithm as soon as the shortest path from s to t is found and skip the maintenance of \(\pi \) in each iteration.
 
Literature
1.
go back to reference Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16 (2016) Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16 (2016)
2.
go back to reference Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: IPCO (1999) Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: IPCO (1999)
3.
4.
go back to reference Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (2014)MATH Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (2014)MATH
5.
go back to reference Bhargava, A., Ganti, R., Nowak, R.: Active algorithms for preference learning problems with multiple populations. CoRR arXiv:1603.04118 (2016) Bhargava, A., Ganti, R., Nowak, R.: Active algorithms for preference learning problems with multiple populations. CoRR arXiv:​1603.​04118 (2016)
6.
go back to reference Chen, S.Y., Yu, Y., Da, Q., Tan, J., Huang, H.K., Tang, H.H.: Stabilizing reinforcement learning in dynamic environment with application to online recommendation. In: SIGKDD (2018) Chen, S.Y., Yu, Y., Da, Q., Tan, J., Huang, H.K., Tang, H.H.: Stabilizing reinforcement learning in dynamic environment with application to online recommendation. In: SIGKDD (2018)
7.
go back to reference Chintala, S.: An overview of deep learning frameworks and an introduction to pytorch (2017) Chintala, S.: An overview of deep learning frameworks and an introduction to pytorch (2017)
8.
go back to reference Das, M., Morales, G.D.F., Gionis, A., Weber, I.: Learning to question: leveraging user preferences for shopping advice. In: SIGKDD (2013) Das, M., Morales, G.D.F., Gionis, A., Weber, I.: Learning to question: leveraging user preferences for shopping advice. In: SIGKDD (2013)
9.
go back to reference Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRef Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRef
10.
go back to reference Ganti, R., Rao, N.S., Balzano, L., Willett, R., Nowak, R.D.: On learning high dimensional structured single index models. In: AAAI (2017) Ganti, R., Rao, N.S., Balzano, L., Willett, R., Nowak, R.D.: On learning high dimensional structured single index models. In: AAAI (2017)
11.
go back to reference Gardner, W.A.: Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis, and critique. IEEE Trans. Signal Process. 6(2), 113–133 (1984)MathSciNet Gardner, W.A.: Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis, and critique. IEEE Trans. Signal Process. 6(2), 113–133 (1984)MathSciNet
12.
go back to reference Grbovic, M., Cheng, H.: Real-time personalization using embeddings for search ranking at airbnb. In: SIGKDD (2018) Grbovic, M., Cheng, H.: Real-time personalization using embeddings for search ranking at airbnb. In: SIGKDD (2018)
13.
go back to reference He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: SIGIR (2017) He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: SIGIR (2017)
14.
go back to reference He, X., He, Z., Du, X., Chua, T.S.: Adversarial personalized ranking for recommendation. In: SIGIR (2018) He, X., He, Z., Du, X., Chua, T.S.: Adversarial personalized ranking for recommendation. In: SIGIR (2018)
15.
go back to reference He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: SIGIR (2016) He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: SIGIR (2016)
16.
go back to reference Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: TencentRec: real-time stream recommendation in practice. In: SIGMOD (2015) Huang, Y., Cui, B., Zhang, W., Jiang, J., Xu, Y.: TencentRec: real-time stream recommendation in practice. In: SIGMOD (2015)
18.
go back to reference Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: SIGKDD. ACM (2003) Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: SIGKDD. ACM (2003)
19.
go back to reference Li, M., Bao, Z., Sellis, T., Yan, S., Zhang, R.: Homeseeker: a visual analytics system of real estate data. J. Vis. Lang. Comput. 45, 1–16 (2018)CrossRef Li, M., Bao, Z., Sellis, T., Yan, S., Zhang, R.: Homeseeker: a visual analytics system of real estate data. J. Vis. Lang. Comput. 45, 1–16 (2018)CrossRef
20.
go back to reference Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)CrossRef Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)CrossRef
21.
go back to reference Qian, L., Gao, J., Jagadish, H.V.: Learning user preferences by adaptive pairwise comparison. Proc. VLDB Endow. 8(11), 1322–1333 (2015)CrossRef Qian, L., Gao, J., Jagadish, H.V.: Learning user preferences by adaptive pairwise comparison. Proc. VLDB Endow. 8(11), 1322–1333 (2015)CrossRef
22.
go back to reference Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI (2009) Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI (2009)
23.
go back to reference Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: ICDM (2007) Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: ICDM (2007)
24.
go back to reference Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: SIGMOD. ACM (2015) Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: SIGMOD. ACM (2015)
25.
go back to reference Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: SIGMOD. ACM (2014) Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: SIGMOD. ACM (2014)
26.
go back to reference Teevan, J., Dumais, S.T., Horvitz, E.: Potential for personalization. ACM Trans. Computer-Human Interact. (TOCHI) 17(1), 4 (2010)CrossRef Teevan, J., Dumais, S.T., Horvitz, E.: Potential for personalization. ACM Trans. Computer-Human Interact. (TOCHI) 17(1), 4 (2010)CrossRef
27.
go back to reference Udell, M., Boyd, S.: Maximizing a sum of sigmoids. Optim. Eng (2013) Udell, M., Boyd, S.: Maximizing a sum of sigmoids. Optim. Eng (2013)
28.
go back to reference Wang, W., Yin, H., Huang, Z., Wang, Q., Du, X., Nguyen, Q.V.H.: Streaming ranking based recommender systems. In: SIGIR (2018) Wang, W., Yin, H., Huang, Z., Wang, Q., Du, X., Nguyen, Q.V.H.: Streaming ranking based recommender systems. In: SIGIR (2018)
29.
go back to reference Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large vocabulary image annotation. In: IJCAI (2011) Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large vocabulary image annotation. In: IJCAI (2011)
30.
go back to reference Yang, L., Hsieh, C.K., Yang, H., Pollak, J.P., Dell, N., Belongie, S., Cole, C., Estrin, D.: Yum-me: a personalized nutrient-based meal recommender system. ACM Trans. Inf. Syst. (TOIS) 36(1), 7 (2017) CrossRef Yang, L., Hsieh, C.K., Yang, H., Pollak, J.P., Dell, N., Belongie, S., Cole, C., Estrin, D.: Yum-me: a personalized nutrient-based meal recommender system. ACM Trans. Inf. Syst. (TOIS) 36(1), 7 (2017) CrossRef
31.
go back to reference Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. ACM Trans. Inf. Syst. (TOIS) 33(3), 10 (2015)CrossRef Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. ACM Trans. Inf. Syst. (TOIS) 33(3), 10 (2015)CrossRef
32.
go back to reference Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to user interest drift for POI recommendation. IEEE Trans. Knowl. Data Eng. 28(10), 2566–2581 (2016)CrossRef Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to user interest drift for POI recommendation. IEEE Trans. Knowl. Data Eng. 28(10), 2566–2581 (2016)CrossRef
33.
go back to reference Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J.: Deep reinforcement learning for page-wise recommendations. In: RecSys (2018) Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J.: Deep reinforcement learning for page-wise recommendations. In: RecSys (2018)
34.
go back to reference Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., Yin, D.: Recommendations with negative feedback via pairwise deep reinforcement learning. In: SIGKDD (2018) Zhao, X., Zhang, L., Ding, Z., Xia, L., Tang, J., Yin, D.: Recommendations with negative feedback via pairwise deep reinforcement learning. In: SIGKDD (2018)
35.
go back to reference Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: SIGIR (2011) Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: SIGIR (2011)
Metadata
Title
Incremental preference adjustment: a graph-theoretical approach
Authors
Liangjun Song
Junhao Gan
Zhifeng Bao
Boyu Ruan
H. V. Jagadish
Timos Sellis
Publication date
03-08-2020
Publisher
Springer Berlin Heidelberg
Published in
The VLDB Journal / Issue 6/2020
Print ISSN: 1066-8888
Electronic ISSN: 0949-877X
DOI
https://doi.org/10.1007/s00778-020-00623-8

Other articles of this Issue 6/2020

The VLDB Journal 6/2020 Go to the issue

Premium Partner