Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

03-08-2020 | Regular Paper | Issue 6/2020

The VLDB Journal 6/2020

Incremental preference adjustment: a graph-theoretical approach

Journal:
The VLDB Journal > Issue 6/2020
Authors:
Liangjun Song, Junhao Gan, Zhifeng Bao, Boyu Ruan, H. V. Jagadish, Timos Sellis
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00778-020-00623-8) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Learning users’ preferences is critical to personalized search and recommendation. Most such systems depend on lists of items rank-ordered according to the user’s preference. Ideally, we want the system to adjust its estimate of users’ preferences after every interaction, thereby becoming progressively better at giving the user what she wants. We also want these adjustments to be gradual and explainable, so that the user is not surprised by wild swings in system rank ordering. In this paper, we support a \(\textit{rank-reversal}\) operation on two items \(\text{ x }\) and \(\text{ y }\) for users: adjust the user’s preference such that the personalized rank of \(\text{ x }\) and \(\text{ y }\) is reversed. We emphasize that this problem is orthogonal to the preference learning and its solutions can run on top of the learning outcome of any vector-embedding-based preference learning model. Therefore, our preference adjustment techniques enable all those existing offline preference learning models to incrementally and interactively improve their response to (indirectly specified) user preferences. Specifically, we define the Minimum Dimension Adjustment (MDA) problem, where the preference adjustments are under certain constraints imposed by a specific graph and the goal is to adjust a user’s preference by reversing the personalized rank of two given items while minimizing the number of dimensions with value changed in the preference vector. We first prove that MDA is NP-hard, and then show that a 2.17-approximate solution can be obtained in polynomial time provided that an optimal solution to a carefully designed problem is given. Finally, we propose two efficient heuristic algorithms, where the first heuristic algorithm can achieve an approximation guarantee, and the second is provably efficient. Experiments on five publicly available datasets show that our solutions can adjust users’ preferences effectively and efficiently.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6/2020

The VLDB Journal 6/2020 Go to the issue

Premium Partner

    Image Credits