Skip to main content
Top
Published in: Acta Mechanica 8/2020

08-06-2020 | Original Paper

Indentation of a nanolayer on a substrate by a rigid cylinder in adhesive contact

Authors: S. Tirapat, T. Senjuntichai, J. Rungamornrat, R. K. N. D. Rajapakse

Published in: Acta Mechanica | Issue 8/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoindentation is employed to characterize the mechanical properties at the nanoscale. This paper considers the mechanical response of a nanoscale elastic layer on an elastic substrate that is indented by an adhesively bonded flat-ended rigid cylindrical punch. The complete Gurtin–Murdoch continuum model is employed to capture the size effects. The contact problem is analyzed by relating displacements of the contact region to contact stresses by a flexibility equation system, which is developed by discretizing the contact region into annular elements. The flexibility equation involves displacement influence functions corresponding to axisymmetric normal and radial surface ring loads applied on the layer-substrate system. The displacement influence functions are derived by using the Hankel integral transforms. Convergence and accuracy of the proposed solution scheme are verified by comparing with limiting cases such as the classical elasticity solution. Selected numerical results indicate that the substrate becomes stiffer and the elastic field is size-dependent due to the surface energy effects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609 (1986)CrossRef Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609 (1986)CrossRef
2.
go back to reference Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef
3.
go back to reference Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse. Gauthier-Villars (1885) Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse. Gauthier-Villars (1885)
4.
go back to reference Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetCrossRef Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)MathSciNetCrossRef
5.
go back to reference Galin, L.A., Gladwell, G.M.L.: Contact Problems: The Legacy of L.A. Galin. Springer, New York (2008) Galin, L.A., Gladwell, G.M.L.: Contact Problems: The Legacy of L.A. Galin. Springer, New York (2008)
6.
go back to reference Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRef Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRef
7.
go back to reference Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRef Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRef
8.
go back to reference Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRef Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRef
10.
go back to reference Gao, X.-L., Zhou, S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64, 1363–1386 (2013)MathSciNetCrossRef Gao, X.-L., Zhou, S.-S.: Strain gradient solutions of half-space and half-plane contact problems. Z. Angew. Math. Phys. 64, 1363–1386 (2013)MathSciNetCrossRef
12.
go back to reference Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRef Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRef
13.
go back to reference Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRef Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRef
14.
go back to reference Zhao, X., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)MathSciNetCrossRef Zhao, X., Rajapakse, R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)MathSciNetCrossRef
15.
go back to reference Zhao, X., Rajapakse, R.K.N.D.: Elastic field of a nano-film subjected to tangential surface load: asymmetric problem. Eur. J. Mech.-A (Solids) 39, 69–75 (2013)MathSciNetCrossRef Zhao, X., Rajapakse, R.K.N.D.: Elastic field of a nano-film subjected to tangential surface load: asymmetric problem. Eur. J. Mech.-A (Solids) 39, 69–75 (2013)MathSciNetCrossRef
16.
go back to reference Rungamornrat, J., Tuttipongsawat, P., Senjuntichai, T.: Elastic layer under axisymmetric surface loads and influence of surface stresses. Appl. Math. Model. 40, 1532–1553 (2016)MathSciNetCrossRef Rungamornrat, J., Tuttipongsawat, P., Senjuntichai, T.: Elastic layer under axisymmetric surface loads and influence of surface stresses. Appl. Math. Model. 40, 1532–1553 (2016)MathSciNetCrossRef
18.
go back to reference Gao, X., Hao, F., Fang, D., Huang, Z.: Boussinesq problem with the surface effect and its application to contact mechanics at the nanoscale. Int. J. Solids Struct. 50, 2620–2630 (2013)CrossRef Gao, X., Hao, F., Fang, D., Huang, Z.: Boussinesq problem with the surface effect and its application to contact mechanics at the nanoscale. Int. J. Solids Struct. 50, 2620–2630 (2013)CrossRef
19.
go back to reference Gao, X., Hao, F., Huang, Z., Fang, D.: Mechanics of adhesive contact at the nanoscale: the effect of surface stress. Int. J. Solids Struct. 51, 566–574 (2014)CrossRef Gao, X., Hao, F., Huang, Z., Fang, D.: Mechanics of adhesive contact at the nanoscale: the effect of surface stress. Int. J. Solids Struct. 51, 566–574 (2014)CrossRef
20.
go back to reference Zhou, S., Gao, X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)MathSciNetCrossRef Zhou, S., Gao, X.-L.: Solutions of half-space and half-plane contact problems based on surface elasticity. Z. Angew. Math. Phys. 64, 145–166 (2013)MathSciNetCrossRef
21.
go back to reference He, L., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)CrossRef He, L., Lim, C.W., Wu, B.S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, 847–857 (2004)CrossRef
22.
go back to reference Lim, C.W., He, L.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)CrossRef Lim, C.W., He, L.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)CrossRef
23.
go back to reference Lu, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)CrossRef Lu, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)CrossRef
24.
go back to reference Nguyen, B.T., Rungamornrat, J., Senjuntichai, T.: Analysis of planar cracks in 3D elastic media with consideration of surface elasticity. Int. J. Fract. 202, 51–77 (2016)CrossRef Nguyen, B.T., Rungamornrat, J., Senjuntichai, T.: Analysis of planar cracks in 3D elastic media with consideration of surface elasticity. Int. J. Fract. 202, 51–77 (2016)CrossRef
25.
go back to reference Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.: Penny-shaped crack in elastic medium with surface energy effects. Acta Mech. 228, 617–630 (2017)MathSciNetCrossRef Intarit, P., Senjuntichai, T., Rungamornrat, J., Rajapakse, R.: Penny-shaped crack in elastic medium with surface energy effects. Acta Mech. 228, 617–630 (2017)MathSciNetCrossRef
26.
go back to reference Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRef Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRef
27.
go back to reference Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phy. Rev. B 71, 094104 (2005)CrossRef Shenoy, V.B.: Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phy. Rev. B 71, 094104 (2005)CrossRef
28.
go back to reference Dingreville, R., Qu, J., Mohammed, C.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetCrossRef Dingreville, R., Qu, J., Mohammed, C.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)MathSciNetCrossRef
29.
go back to reference Wang, J.S., Feng, X.O., Wang, G.F., Yu, S.W.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett. 92, 191901 (2008)CrossRef Wang, J.S., Feng, X.O., Wang, G.F., Yu, S.W.: Twisting of nanowires induced by anisotropic surface stresses. Appl. Phys. Lett. 92, 191901 (2008)CrossRef
30.
go back to reference Zhao, X.: Surface Loading and Rigid Indentation of an Elastic Layer with Surface Energy Effects. Master thesis, University of British Columbia, Vancouver (2009) Zhao, X.: Surface Loading and Rigid Indentation of an Elastic Layer with Surface Energy Effects. Master thesis, University of British Columbia, Vancouver (2009)
31.
go back to reference Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Rigid frictionless indentation on elastic half space with influence of surface stresses. Int. J. Eng. Sci. 71, 15–35 (2013)MathSciNetCrossRef Pinyochotiwong, Y., Rungamornrat, J., Senjuntichai, T.: Rigid frictionless indentation on elastic half space with influence of surface stresses. Int. J. Eng. Sci. 71, 15–35 (2013)MathSciNetCrossRef
32.
go back to reference Intarit, P., Senjuntichai, T., Rungamornrat, J.: Elastic layer under axisymmetric indentation and surface energy effects. Z. Angew. Math. Phys. 69, 29 (2018)MathSciNetCrossRef Intarit, P., Senjuntichai, T., Rungamornrat, J.: Elastic layer under axisymmetric indentation and surface energy effects. Z. Angew. Math. Phys. 69, 29 (2018)MathSciNetCrossRef
33.
go back to reference Karasudhi, P.: Foundations of Solid Mechanics. Kluwer Academic Publishers, Boston (1991)CrossRef Karasudhi, P.: Foundations of Solid Mechanics. Kluwer Academic Publishers, Boston (1991)CrossRef
34.
go back to reference Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)MathSciNetCrossRef Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)MathSciNetCrossRef
35.
go back to reference Spence, D.A.: Self similar solutions to adhesive contact problems with incremental loading. Proc. R. Soc. A Math. Phys. 305, 55–80 (1968)MathSciNetMATH Spence, D.A.: Self similar solutions to adhesive contact problems with incremental loading. Proc. R. Soc. A Math. Phys. 305, 55–80 (1968)MathSciNetMATH
Metadata
Title
Indentation of a nanolayer on a substrate by a rigid cylinder in adhesive contact
Authors
S. Tirapat
T. Senjuntichai
J. Rungamornrat
R. K. N. D. Rajapakse
Publication date
08-06-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 8/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02703-w

Other articles of this Issue 8/2020

Acta Mechanica 8/2020 Go to the issue

Premium Partners